Do you want to publish a course? Click here

Low Mass Stars as Tracers of Star Formation in Diverse Environments

87   0   0.0 ( 0 )
 Added by S. T. Megeath
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our understanding of the spatial distribution and properties of young low-mass stars and protostars has been revolutionized by sensitive space-based observations at X-ray and IR wavelengths. By surveying spatial scales from clusters to molecular clouds, these data provide robust measurements of key star formation properties. Goal: with their large numbers and their presence in diverse environments, censuses of low mass stars and protostars can be used to measure the dependence of star formation on environmental properties, such as the density and temperature of the natal gas, strengths of the magnetic and radiation fields, and the density of stars. Here we summarize how such censuses can answer three basic questions: i.) how is the star formation rate influenced by environment, ii.) does the IMF vary with environment, and iii.) how does the environment shape the formation of bound clusters? Answering these questions is an important step toward understanding star and cluster formation across the extreme range of environments found in the Universe. Requirements: sensitivity and angular resolution improvements will allow us to study the full range of environments found in the Milky Way. High spatial dynamic range (< 1arcsec to > 1degree scales) imaging with space-based telescopes at X-ray, mid-IR, and far-IR and ground-based facilities at near-IR and sub-mm wavelengths are needed to identify and characterize young stars.



rate research

Read More

Massive stars can be found in wide (hundreds to thousands AU) binaries with other massive stars. We use $N$-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially; and probably only one will survive if more than one are present initially. Therefore any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74) which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass IMF for its total mass suggests that however massive stars form they randomly sample the IMF (as the massive stars did not know about each other).
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
The stellar initial mass function (IMF) is a fundamental property of star formation, offering key insight into the physics driving the process as well as informing our understanding of stellar populations, their by-products, and their impact on the surrounding medium. While the IMF appears to be fairly uniform in the Milky Way disk, it is not yet known how the IMF might behave across a wide range of environments, such as those with extreme gas temperatures and densities, high pressures, and low metallicities. We discuss new opportunities for measuring the IMF in such environments in the coming decade with JWST, WFIRST, and thirty-meter class telescopes. For the first time, we will be able to measure the high-mass slope and peak of the IMF via direct star counts for massive star clusters across the Milky Way and Local Group, providing stringent constraints for star formation theory and laying the groundwork for understanding distant and unresolved stellar systems.
It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragmentation, ejection of protostellar embryos, disc fragmentation, and photo-erosion of prestellar cores. I will focus on the disc fragmentation theory and discuss how it addresses critical observational constraints, i.e. the low-mass initial mass function, the brown dwarf desert, and the binary statistics of low-mass stars and brown dwarfs. I will examine whether observations may be used to distinguish between different formation mechanisms, and give a few examples of systems that strongly favour a specific formation scenario. Finally, I will argue that it is likely that all mechanisms may play a role in low-mass star and brown dwarf formation.
We have undertaken a systematic study of pre-main sequence (PMS) stars spanning a wide range of masses (0.5 - 4 Msolar), metallicities (0.1 - 1 Zsolar) and ages (0.5 - 30 Myr). We have used the Hubble Space Telescope (HST) to identify and characterise a large sample of PMS objects in several star-forming regions in the Magellanic Clouds, namely 30 Dor and the SN 1987A field in the LMC, and NGC 346 and NGC 602 in the SMC, and have compared them to PMS stars in similar regions in the Milky Way, such as NGC 3603 and Trumpler 14, which we studied with the HST and Very Large Telescope (VLT). We have developed a novel method that combines broad-band (V, I) photometry with narrow-band Halpha imaging to determine the physical parameters (temperature, luminosity, age, mass and mass accretion rate) of more than 3000 bona-fide PMS stars still undergoing active mass accretion. This is presently the largest and most homogeneous sample of PMS objects with known physical properties and includes not only very young objects, but also PMS stars older than 10 - 20 Myr that are approaching the main sequence (MS). We find that the mass accretion rate scales roughly with the square root of the age, with the mass of the star to the power of 1.5, and with the inverse of the cube root of the metallicity. The mass accretion rates for stars of the same mass and age are thus systematically higher in the Magellanic Clouds than in the Milky Way. These results are bound to have important implications for, and constraints on our understanding of the star formation process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا