No Arabic abstract
We report radial-velocity search for short-period planets in the Pleiades open cluster. We observed 30 Pleiades member stars at the Okayama Astrophysical Observatory (OAO) with High Dispersion Echelle Spectrograph (HIDES). To evaluate and mitigate the effects of stellar activity on radial-velocity measurements, we computed four activity indicators (FWHM, $V_{rm span}$, $W_{rm span}$ and $S_{rm H{alpha}}$). Among our sample, no short-period planet candidates were detected. Stellar intrinsic RV jitter was estimated to be ${rm 52 m,s^{-1}}$, ${rm 128 m,s^{-1}}$ and ${rm 173 m,s^{-1}}$ for stars with $vsin i$ of ${rm 10 km,s^{-1}}$, ${rm 15 km,s^{-1}}$ and ${rm 20 km,s^{-1}}$, respectively. We determined the planet occurrence rate from our survey and set the upper limit to 11.4% for the planets with masses 1--13 $M_{rm JUP}$ and period 1--10 days. To set a more stringent constraint on the planet occurrence rate, we combined the result of our survey with those of other surveys targeting open clusters with ages between 30--300 Myr. As a result, the planet occurrence rate in young open clusters was found to be less than 7.4%, 2.9% and 1.9% for the planets with an orbital period of three days and masses between 1--5, 5--13, and 13--80 $M_{rm JUP}$, respectively.
We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the $H$ and $K_{S}$ bands using HiCIAO combined with the adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the $H$ band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch image, but the precision of its proper motion was not sufficient to conclude whether it was background object. Four other candidates are waiting for second epoch observations to determine their proper motion. Finally, the remaining 2 were confirmed to be 60 $M_{J}$ brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5) respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the $H$ band beyond 1.5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50--1000 AU. For this we extrapolated the distribution of planet mass and semi-major axis derived from RV observations and adopted the planet evolution model of Baraffe et al. (2003). As there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% ($2sigma$) around one star of the Pleiades cluster.
In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M_Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51 +/- 10% for companions with masses between 1-13 M_Jup and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.
We present observations with the planet finder SPHERE of a selected sample of the most promising radial velocity (RV) companions for high-contrast imaging. Using a Monte Carlo simulation to explore all the possible inclinations of the orbit of wide RV companions, we identified the systems with companions that could potentially be detected with SPHERE. We found the most favorable RV systems to observe are : HD,142, GJ,676, HD,39091, HIP,70849, and HD,30177 and carried out observations of these systems during SPHERE Guaranteed Time Observing (GTO). To reduce the intensity of the starlight and reveal faint companions, we used Principle Component Analysis (PCA) algorithms alongside angular and spectral differential imaging. We injected synthetic planets with known flux to evaluate the self-subtraction caused by our data reduction and to determine the 5$sigma$ contrast in the J band $vs$ separation for our reduced images. We estimated the upper limit on detectable companion mass around the selected stars from the contrast plot obtained from our data reduction. Although our observations enabled contrasts larger than 15 mag at a few tenths of arcsec from the host stars, we detected no planets. However, we were able to set upper mass limits around the stars using AMES-COND evolutionary models. We can exclude the presence of companions more massive than 25-28 MJup around these stars, confirming the substellar nature of these RV companions.
Detecting exoplanets around giant stars sheds light on the later-stage evolution of planetary systems. We observed the M giant HD 18438 and the K giant HD 158996 as part of a Search for Exoplanets around Northern circumpolar Stars (SENS) and obtained 38 and 24 spectra from 2010 to 2017 using the high-resolution Bohyunsan Observatory Echelle Spectrograph (BOES) at the 1.8m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We obtained precise RV measurements from the spectra and found long-period radial velocity (RV) variations with period 719.0 days for HD 18438 and 820.2 days for HD 158996. We checked the chromospheric activities using Ca ii H and H_alpha lines, HIPPARCOS photometry and line bisectors to identify the origin of the observed RV variations. In the case of HD 18438, we conclude that the observed RV variations with period 719.0 days are likely to be caused by the pulsations because the periods of HIPPARCOS photometric and H alpha EW variations for HD 18438 are similar to that of RV variations in Lomb-Scargle periodogram, and there are no correlations between bisectors and RV measurements. In the case of HD 158996, on the other hand, we did not find any similarity in the respective periodograms nor any correlation between RV variations and line bisector variations. In addition, the probability that the real rotational period can be as longer than the RV period for HD 158996 is only about 4.3%. Thus we conclude that observed RV variations with a period of 820.2 days of HD 158996 are caused by a planetary companion, which has the minimum mass of 14.0 MJup, the semi-major axis of 2.1 AU, and eccentricity of 0.13 assuming the stellar mass of 1.8 M_sun. HD 158996 is so far one of the brightest and largest stars to harbor an exoplanet candidate.
Recent discoveries of strongly misaligned transiting exoplanets pose a challenge to the established planet formation theory which assumes planetary systems to form and evolve in isolation. However, the fact that the majority of stars actually do form in star clusters raises the question how isolated forming planetary systems really are. Besides radiative and tidal forces the presence of dense gas aggregates in star-forming regions are potential sources for perturbations to protoplanetary discs or systems. Here we show that subsequent capture of gas from large extended accretion envelopes onto a passing star with a typical circumstellar disc can tilt the disc plane to retrograde orientation, naturally explaining the formation of strongly inclined planetary systems. Furthermore, the inner disc regions may become denser, and thus more prone to speedy coagulation and planet formation. Pre-existing planetary systems are compressed by gas inflows leading to a natural occurrence of close-in misaligned hot Jupiters and short-period eccentric planets. The likelihood of such events mainly depends on the gas content of the cluster and is thus expected to be highest in the youngest star clusters.