Do you want to publish a course? Click here

The NTU-AISG Text-to-speech System for Blizzard Challenge 2020

82   0   0.0 ( 0 )
 Added by Haobo Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We report our NTU-AISG Text-to-speech (TTS) entry systems for the Blizzard Challenge 2020 in this paper. There are two TTS tasks in this years challenge, one is a Mandarin TTS task, the other is a Shanghai dialect TTS task. We have participated both. One of the main challenges is to build TTS systems with low-resource constraints, particularly for the case of Shanghai dialect, of which about three hours data are available to participants. To overcome the constraint, we adopt an average-speaker modeling method. That is, we first employ external Mandarin data to train both End-to-end acoustic model and WaveNet vocoder, then we use Shanghai dialect to tune the acoustic model and WaveNet vocoder respectively. Apart from this, we have no Shanghai dialect lexicon despite syllable transcripts are provided for the training data. Since we are not sure if similar syllable transcripts are provided for the evaluation data during the training stage, we use Mandarin lexicon for Shanghai dialect instead. With the letter, as decomposed from the corresponding Mandarin syllable, as input, though the naturalness and original speaker similarity of the synthesized speech are good, subjective evaluation results indicate the intelligibility of the synthesized speech is deeply undermined for the Shanghai dialect TTS system.



rate research

Read More

This report describes our submission to the VoxCeleb Speaker Recognition Challenge (VoxSRC) at Interspeech 2020. We perform a careful analysis of speaker recognition models based on the popular ResNet architecture, and train a number of variants using a range of loss functions. Our results show significant improvements over most existing works without the use of model ensemble or post-processing. We release the training code and pre-trained models as unofficial baselines for this years challenge.
This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to address issues in handling real multi-talker recordings. We then present the details of the components, which include Res2Net-based speaker embedding extractor, conformer-based continuous speech separation with leakage filtering, and a modified DOVER (short for Diarization Output Voting Error Reduction) method for system fusion. We evaluate the systems with the data set provided by VoxSRCchallenge 2020, which contains real-life multi-talker audio collected from YouTube. Our best system achieves 3.71% and 6.23% of the diarization error rate (DER) on development set and evaluation set, respectively, being ranked the 1st at the diarization track of the challenge.
This paper describes the NTNU ASR system participating in the Formosa Speech Recognition Challenge 2020 (FSR-2020) supported by the Formosa Speech in the Wild project (FSW). FSR-2020 aims at fostering the development of Taiwanese speech recognition. Apart from the issues on tonal and dialectical variations of the Taiwanese language, speech artificially contaminated with different types of real-world noise also has to be dealt with in the final test stage; all of these make FSR-2020 much more challenging than before. To work around the under-resourced issue, the main technical aspects of our ASR system include various deep learning techniques, such as transfer learning, semi-supervised learning, front-end speech enhancement and model ensemble, as well as data cleansing and data augmentation conducted on the training data. With the best configuration, our system obtains 13.1 % syllable error rate (SER) on the final-test set, achieving the first place among all participating systems on Track 3.
In this paper, we present the submitted system for the third DIHARD Speech Diarization Challenge from the DKU-Duke-Lenovo team. Our system consists of several modules: voice activity detection (VAD), segmentation, speaker embedding extraction, attentive similarity scoring, agglomerative hierarchical clustering. In addition, the target speaker VAD (TSVAD) is used for the phone call data to further improve the performance. Our final submitted system achieves a DER of 15.43% for the core evaluation set and 13.39% for the full evaluation set on task 1, and we also get a DER of 21.63% for core evaluation set and 18.90% for full evaluation set on task 2.
80 - Xiaoyi Qin , Ming Li , Hui Bu 2020
The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independent speaker verification from single microphone array, and far-field text-dependent speaker verification from distributed microphone arrays. All three tasks pose a cross-channel challenge to the participants. To simulate the real-life scenario, the enrollment utterances are recorded from close-talk cellphone, while the test utterances are recorded from the far-field microphone arrays. In this paper, we describe the database, the challenge, and the baseline system, which is based on a ResNet-based deep speaker network with cosine similarity scoring. For a given utterance, the speaker embeddings of different channels are equally averaged as the final embedding. The baseline system achieves minDCFs of 0.62, 0.66, and 0.64 and EERs of 6.27%, 6.55%, and 7.18% for task 1, task 2, and task 3, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا