Do you want to publish a course? Click here

Bootleg: Chasing the Tail with Self-Supervised Named Entity Disambiguation

101   0   0.0 ( 0 )
 Added by Laurel Orr
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A challenge for named entity disambiguation (NED), the task of mapping textual mentions to entities in a knowledge base, is how to disambiguate entities that appear rarely in the training data, termed tail entities. Humans use subtle reasoning patterns based on knowledge of entity facts, relations, and types to disambiguate unfamiliar entities. Inspired by these patterns, we introduce Bootleg, a self-supervised NED system that is explicitly grounded in reasoning patterns for disambiguation. We define core reasoning patterns for disambiguation, create a learning procedure to encourage the self-supervised model to learn the patterns, and show how to use weak supervision to enhance the signals in the training data. Encoding the reasoning patterns in a simple Transformer architecture, Bootleg meets or exceeds state-of-the-art on three NED benchmarks. We further show that the learned representations from Bootleg successfully transfer to other non-disambiguation tasks that require entity-based knowledge: we set a new state-of-the-art in the popular TACRED relation extraction task by 1.0 F1 points and demonstrate up to 8% performance lift in highly optimized production search and assistant tasks at a major technology company



rate research

Read More

We study the problem of building entity tagging systems by using a few rules as weak supervision. Previous methods mostly focus on disambiguation entity types based on contexts and expert-provided rules, while assuming entity spans are given. In this work, we propose a novel method TALLOR that bootstraps high-quality logical rules to train a neural tagger in a fully automated manner. Specifically, we introduce compound rules that are composed from simple rules to increase the precision of boundary detection and generate more diverse pseudo labels. We further design a dynamic label selection strategy to ensure pseudo label quality and therefore avoid overfitting the neural tagger. Experiments on three datasets demonstrate that our method outperforms other weakly supervised methods and even rivals a state-of-the-art distantly supervised tagger with a lexicon of over 2,000 terms when starting from only 20 simple rules. Our method can serve as a tool for rapidly building taggers in emerging domains and tasks. Case studies show that learned rules can potentially explain the predicted entities.
345 - Yao Fu , Chuanqi Tan , Mosha Chen 2020
Named entity recognition (NER) is a well-studied task in natural language processing. However, the widely-used sequence labeling framework is difficult to detect entities with nested structures. In this work, we view nested NER as constituency parsing with partially-observed trees and model it with partially-observed TreeCRFs. Specifically, we view all labeled entity spans as observed nodes in a constituency tree, and other spans as latent nodes. With the TreeCRF we achieve a uniform way to jointly model the observed and the latent nodes. To compute the probability of partial trees with partial marginalization, we propose a variant of the Inside algorithm, the textsc{Masked Inside} algorithm, that supports different inference operations for different nodes (evaluation for the observed, marginalization for the latent, and rejection for nodes incompatible with the observed) with efficient parallelized implementation, thus significantly speeding up training and inference. Experiments show that our approach achieves the state-of-the-art (SOTA) F1 scores on the ACE2004, ACE2005 dataset, and shows comparable performance to SOTA models on the GENIA dataset. Our approach is implemented at: url{https://github.com/FranxYao/Partially-Observed-TreeCRFs}.
We study learning named entity recognizers in the presence of missing entity annotations. We approach this setting as tagging with latent variables and propose a novel loss, the Expected Entity Ratio, to learn models in the presence of systematically missing tags. We show that our approach is both theoretically sound and empirically useful. Experimentally, we find that it meets or exceeds performance of strong and state-of-the-art baselines across a variety of languages, annotation scenarios, and amounts of labeled data. In particular, we find that it significantly outperforms the previous state-of-the-art methods from Mayhew et al. (2019) and Li et al. (2021) by +12.7 and +2.3 F1 score in a challenging setting with only 1,000 biased annotations, averaged across 7 datasets. We also show that, when combined with our approach, a novel sparse annotation scheme outperforms exhaustive annotation for modest annotation budgets.
We study the open-domain named entity recognition (NER) problem under distant supervision. The distant supervision, though does not require large amounts of manual annotations, yields highly incomplete and noisy distant labels via external knowledge bases. To address this challenge, we propose a new computational framework -- BOND, which leverages the power of pre-trained language models (e.g., BERT and RoBERTa) to improve the prediction performance of NER models. Specifically, we propose a two-stage training algorithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels, which can significantly improve the recall and precision; In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance. Thorough experiments on 5 benchmark datasets demonstrate the superiority of BOND over existing distantly supervised NER methods. The code and distantly labeled data have been released in https://github.com/cliang1453/BOND.
Named Entity Recognition (NER) and Entity Linking (EL) play an essential role in voice assistant interaction, but are challenging due to the special difficulties associated with spoken user queries. In this paper, we propose a novel architecture that jointly solves the NER and EL tasks by combining them in a joint reranking module. We show that our proposed framework improves NER accuracy by up to 3.13% and EL accuracy by up to 3.6% in F1 score. The features used also lead to better accuracies in other natural language understanding tasks, such as domain classification and semantic parsing.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا