Do you want to publish a course? Click here

Estimating a mixing distribution on the sphere using predictive recursion

151   0   0.0 ( 0 )
 Added by Ryan Martin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Mixture models are commonly used when data show signs of heterogeneity and, often, it is important to estimate the distribution of the latent variable responsible for that heterogeneity. This is a common problem for data taking values in a Euclidean space, but the work on mixing distribution estimation based on directional data taking values on the unit sphere is limited. In this paper, we propose using the predictive recursion (PR) algorithm to solve for a mixture on a sphere. One key feature of PR is its computational efficiency. Moreover, compared to likelihood-based methods that only support finite mixing distribution estimates, PR is able to estimate a smooth mixing density. PRs asymptotic consistency in spherical mixture models is established, and simulation results showcase its benefits compared to existing likelihood-based methods. We also show two real-data examples to illustrate how PR can be used for goodness-of-fit testing and clustering.



rate research

Read More

In prediction problems, it is common to model the data-generating process and then use a model-based procedure, such as a Bayesian predictive distribution, to quantify uncertainty about the next observation. However, if the posited model is misspecified, then its predictions may not be calibrated -- that is, the predictive distributions quantiles may not be nominal frequentist prediction upper limits, even asymptotically. Rather than abandoning the comfort of a model-based formulation for a more complicated non-model-based approach, here we propose a strategy in which the data itself helps determine if the assumed model-based solution should be adjusted to account for model misspecification. This is achieved through a generalized Bayes formulation where a learning rate parameter is tuned, via the proposed generalized predictive calibration (GPrC) algorithm, to make the predictive distribution calibrated, even under model misspecification. Extensive numerical experiments are presented, under a variety of settings, demonstrating the proposed GPrC algorithms validity, efficiency, and robustness.
Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, which we prove achieves a much faster mixing time that is independent of the number of covariates, under the same assumptions. To the best of our knowledge, this is the first high-dimensional result which rigorously shows that the mixing rate of informed MCMC methods can be fast enough to offset the computational cost of local posterior evaluation. Motivated by the theoretical analysis of our sampler, we further propose a new approach called two-stage drift condition to studying convergence rates of Markov chains on general state spaces, which can be useful for obtaining tight complexity bounds in high-dimensional settings. The practical advantages of our algorithm are illustrated by both simulation studies and real data analysis.
Population size estimation based on capture-recapture experiment under triple record system is an interesting problem in various fields including epidemiology, population studies, etc. In many real life scenarios, there exists inherent dependency between capture and recapture attempts. We propose a novel model that successfully incorporates the possible dependency and the associated parameters possess nice interpretations. We provide estimation methodology for the population size and the associated model parameters based on maximum likelihood method. The proposed model is applied to analyze real data sets from public health and census coverage evaluation study. The performance of the proposed estimate is evaluated through extensive simulation study and the results are compared with the existing competitors. The results exhibit superiority of the proposed model over the existing competitors both in real data analysis and simulation study.
102 - Giles Hooker , Hanlin Shang 2020
This paper presents tests to formally choose between regression models using different derivatives of a functional covariate in scalar-on-function regression. We demonstrate that for linear regression, models using different derivatives can be nested within a model that includes point-impact effects at the end-points of the observed functions. Contrasts can then be employed to test the specification of different derivatives. When nonlinear regression models are defined, we apply a $J$ test to determine the statistical significance of the nonlinear structure between a functional covariate and a scalar response. The finite-sample performance of these methods is verified in simulation, and their practical application is demonstrated using a chemometric data set.
In the stochastic frontier model, the composed error term consists of the measurement error and the inefficiency term. A general assumption is that the inefficiency term follows a truncated normal or exponential distribution. In a wide variety of models evaluating the cumulative distribution function of the composed error term is required. This work introduces and proves four representation theorems for these distributions - two for each distributional assumptions. These representations can be utilized for a fast and accurate evaluation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا