Do you want to publish a course? Click here

Dimension-free Mixing for High-dimensional Bayesian Variable Selection

125   0   0.0 ( 0 )
 Added by Quan Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, which we prove achieves a much faster mixing time that is independent of the number of covariates, under the same assumptions. To the best of our knowledge, this is the first high-dimensional result which rigorously shows that the mixing rate of informed MCMC methods can be fast enough to offset the computational cost of local posterior evaluation. Motivated by the theoretical analysis of our sampler, we further propose a new approach called two-stage drift condition to studying convergence rates of Markov chains on general state spaces, which can be useful for obtaining tight complexity bounds in high-dimensional settings. The practical advantages of our algorithm are illustrated by both simulation studies and real data analysis.

rate research

Read More

We develop a Bayesian variable selection method, called SVEN, based on a hierarchical Gaussian linear model with priors placed on the regression coefficients as well as on the model space. Sparsity is achieved by using degenerate spike priors on inactive variables, whereas Gaussian slab priors are placed on the coefficients for the important predictors making the posterior probability of a model available in explicit form (up to a normalizing constant). The strong model selection consistency is shown to be attained when the number of predictors grows nearly exponentially with the sample size and even when the norm of mean effects solely due to the unimportant variables diverge, which is a novel attractive feature. An appealing byproduct of SVEN is the construction of novel model weight adjusted prediction intervals. Embedding a unique model based screening and using fast Cholesky updates, SVEN produces a highly scalable computational framework to explore gigantic model spaces, rapidly identify the regions of high posterior probabilities and make fast inference and prediction. A temperature schedule guided by our model selection consistency derivations is used to further mitigate multimodal posterior distributions. The performance of SVEN is demonstrated through a number of simulation experiments and a real data example from a genome wide association study with over half a million markers.
It has become increasingly common to collect high-dimensional binary data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algorithms for fitting such models face issues in scaling up to high dimensions due to the intractability of the likelihood, involving an integral over a multivariate normal distribution having no analytic form. Although a variety of algorithms have been proposed to approximate this intractable integral, these approaches are difficult to implement and/or inaccurate in high dimensions. We propose a two-stage Bayesian approach for inference on model parameters while taking care of the uncertainty propagation between the stages. We use the special structure of latent Gaussian models to reduce the highly expensive computation involved in joint parameter estimation to focus inference on marginal distributions of model parameters. This essentially makes the method embarrassingly parallel for both stages. We illustrate performance in simulations and applications to joint species distribution modeling in ecology.
In this article, we propose new Bayesian methods for selecting and estimating a sparse coefficient vector for skewed heteroscedastic response. Our novel Bayesian procedures effectively estimate the median and other quantile functions, accommodate non-local prior for regression effects without compromising ease of implementation via sampling based tools, and asymptotically select the true set of predictors even when the number of covariates increases in the same order of the sample size. We also extend our method to deal with some observations with very large errors. Via simulation studies and a re-analysis of a medical cost study with large number of potential predictors, we illustrate the ease of implementation and other practical advantages of our approach compared to existing methods for such studies.
211 - Yinrui Sun , Hangjin Jiang 2020
In the era of big data, variable selection is a key technology for handling high-dimensional problems with a small sample size but a large number of covariables. Different variable selection methods were proposed for different models, such as linear model, logistic model and generalized linear model. However, fewer works focused on variable selection for single index models, especially, for single index logistic model, due to the difficulty arose from the unknown link function and the slow mixing rate of MCMC algorithm for traditional logistic model. In this paper, we proposed a Bayesian variable selection procedure for single index logistic model by taking the advantage of Gaussian process and data augmentation. Numerical results from simulations and real data analysis show the advantage of our method over the state of arts.
169 - Liya Fu , Jiaqi Li , You-Gan Wang 2020
This paper proposes a new robust smooth-threshold estimating equation to select important variables and automatically estimate parameters for high dimensional longitudinal data. A novel working correlation matrix is proposed to capture correlations within the same subject. The proposed procedure works well when the number of covariates p increases as the number of subjects n increases. The proposed estimates are competitive with the estimates obtained with the true correlation structure, especially when the data are contaminated. Moreover, the proposed method is robust against outliers in the response variables and/or covariates. Furthermore, the oracle properties for robust smooth-threshold estimating equations under large n, diverging p are established under some regularity conditions. Extensive simulation studies and a yeast cell cycle data are used to evaluate the performance of the proposed method, and results show that our proposed method is competitive with existing robust variable selection procedures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا