No Arabic abstract
Automating physical database design has remained a long-term interest in database research due to substantial performance gains afforded by optimised structures. Despite significant progress, a majority of todays commercial solutions are highly manual, requiring offline invocation by database administrators (DBAs) who are expected to identify and supply representative training workloads. Unfortunately, the latest advancements like query stores provide only limited support for dynamic environments. This status quo is untenable: identifying representative static workloads is no longer realistic; and physical design tools remain susceptible to the query optimisers cost misestimates (stemming from unrealistic assumptions such as attribute value independence and uniformity of data distribution). We propose a self-driving approach to online index selection that eschews the DBA and query optimiser, and instead learns the benefits of viable structures through strategic exploration and direct performance observation. We view the problem as one of sequential decision making under uncertainty, specifically within the bandit learning setting. Multi-armed bandits balance exploration and exploitation to provably guarantee average performance that converges to a fixed policy that is optimal with perfect hindsight. Our comprehensive empirical results demonstrate up to 75% speed-up on shifting and ad-hoc workloads and 28% speed-up on static workloads compared against a state-of-the-art commercial tuning tool.
Automating physical database design has remained a long-term interest in database research due to substantial performance gains afforded by optimised structures. Despite significant progress, a majority of todays commercial solutions are highly manual, requiring offline invocation by database administrators (DBAs) who are expected to identify and supply representative training workloads. Even the latest advancements like query stores provide only limited support for dynamic environments. This status quo is untenable: identifying representative static workloads is no longer realistic; and physical design tools remain susceptible to the query optimisers cost misestimates. Furthermore, modern application environments such as hybrid transactional and analytical processing (HTAP) systems render analytical modelling next to impossible. We propose a self-driving approach to online index selection that eschews the DBA and query optimiser, and instead learns the benefits of viable structures through strategic exploration and direct performance observation. We view the problem as one of sequential decision making under uncertainty, specifically within the bandit learning setting. Multi-armed bandits balance exploration and exploitation to provably guarantee average performance that converges to policies that are optimal with perfect hindsight. Our comprehensive empirical evaluation against a state-of-the-art commercial tuning tool demonstrates up to 75% speed-up on shifting and ad-hoc workloads and up to 28% speed-up on static workloads in analytical processing environments. In HTAP environments, our solution provides up to 59% speed-up on shifting and 51% speed-up on static workloads. Furthermore, our bandit framework outperforms deep reinforcement learning (RL) in terms of convergence speed and performance volatility (providing up to 58% speed-up).
Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse. Techniques to accelerate the execution of filter expressions include clustered indexes, specialized sort orders (e.g., Z-order), multi-dimensional indexes, and, for high selectivity queries, secondary indexes. However, these schemes are hard to tune and their performance is inconsistent. Recent work on learned multi-dimensional indexes has introduced the idea of automatically optimizing an index for a particular dataset and workload. However, the performance of that work suffers in the presence of correlated data and skewed query workloads, both of which are common in real applications. In this paper, we introduce Tsunami, which addresses these limitations to achieve up to 6X faster query performance and up to 8X smaller index size than existing learned multi-dimensional indexes, in addition to up to 11X faster query performance and 170X smaller index size than optimally-tuned traditional indexes.
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed bandit problem with safety constraints that depend (linearly) on an unknown parameter vector. As such, the learner is unable to identify all safe actions and must act conservatively in ensuring that her actions satisfy the safety constraint at all rounds (at least with high probability). For these bandits, we propose a new UCB-based algorithm called Safe-LUCB, which includes necessary modifications to respect safety constraints. The algorithm has two phases. During the pure exploration phase the learner chooses her actions at random from a restricted set of safe actions with the goal of learning a good approximation of the entire unknown safe set. Once this goal is achieved, the algorithm begins a safe exploration-exploitation phase where the learner gradually expands their estimate of the set of safe actions while controlling the growth of regret. We provide a general regret bound for the algorithm, as well as a problem dependent bound that is connected to the location of the optimal action within the safe set. We then propose a modified heuristic that exploits our problem dependent analysis to improve the regret.
We present a novel method for testing the safety of self-driving vehicles in simulation. We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps. Instead, we directly simulate the outputs of the self-driving vehicles perception and prediction system, enabling realistic motion planning testing. Specifically, we use paired data in the form of ground truth labels and real perception and prediction outputs to train a model that predicts what the online system will produce. Importantly, the inputs to our system consists of high definition maps, bounding boxes, and trajectories, which can be easily sketched by a test engineer in a matter of minutes. This makes our approach a much more scalable solution. Quantitative results on two large-scale datasets demonstrate that we can realistically test motion planning using our simulations.
Given a replicated database, a divergent design tunes the indexes in each replica differently in order to specialize it for a specific subset of the workload. This specialization brings significant performance gains compared to the common practice of having the same indexes in all replicas, but requires the development of new tuning tools for database administrators. In this paper we introduce RITA (Replication-aware Index Tuning Advisor), a novel divergent-tuning advisor that offers several essential features not found in existing tools: it generates robust divergent designs that allow the system to adapt gracefully to replica failures; it computes designs that spread the load evenly among specialized replicas, both during normal operation and when replicas fail; it monitors the workload online in order to detect changes that require a recomputation of the divergent design; and, it offers suggestions to elastically reconfigure the system (by adding/removing replicas or adding/dropping indexes) to respond to workload changes. The key technical innovation behind RITA is showing that the problem of selecting an optimal design can be formulated as a Binary Integer Program (BIP). The BIP has a relatively small number of variables, which makes it feasible to solve it efficiently using any off-the-shelf linear-optimization software. Experimental results demonstrate that RITA computes better divergent designs compared to existing tools, offers more features, and has fast execution times.