Do you want to publish a course? Click here

Differential forms on smooth operadic algebras

221   0   0.0 ( 0 )
 Added by Pedro Tamaroff
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The classical Hochschild--Kostant--Rosenberg (HKR) theorem computes the Hochschild homology and cohomology of smooth commutative algebras. In this paper, we generalise this result to other kinds of algebraic structures. Our main insight is that producing HKR isomorphisms for other types of algebras is directly related to computing quasi-free resolutions in the category of left modules over an operad; we establish that an HKR-type result follows as soon as this resolution is diagonally pure. As examples we obtain a permutative and a pre-Lie HKR theorem for smooth commutative and smooth brace algebras, respectively. We also prove an HKR theorem for operads obtained from a filtered distributive law, which recovers, in particular, all the aspects of the classical HKR theorem. Finally, we show that this property is Koszul dual to the operadic PBW property defined by V. Dotsenko and the second author (1804.06485).



rate research

Read More

We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth 2-functors appear in several fields, namely as connections on (non-abelian) gerbes, as curvatures of smooth functors and as critical points in BF theory. We demonstrate further that our dictionary provides a powerful tool to discuss the transgression of geometric objects to loop spaces.
146 - Jie Xiao , Han Xu , Minghui Zhao 2021
Let $textbf{U}^+$ be the positive part of the quantum group $textbf{U}$ associated with a generalized Cartan matrix. In the case of finite type, Lusztig constructed the canonical basis $textbf{B}$ of $textbf{U}^+$ via two approaches. The first one is an elementary algebraic construction via Ringel-Hall algebra realization of $textbf{U}^+$ and the second one is a geometric construction. The geometric construction of canonical basis can be generalized to the cases of all types. The generalization of the elementary algebraic construction to affine type is an important problem. We give several main results of algebraic constructions to the affine canonical basis in this ariticle. These results are given by Beck-Nakajima, Lin-Xiao-Zhang, Xiao-Xu-Zhao, respectively.
Let $Q$ be a finite acyclic valued quiver. We give the high-dimensional cluster multiplication formulas in the quantum cluster algebra of $Q$ with arbitrary coefficients, by applying certain quotients of derived Hall subalgebras of $Q$.
125 - Boris Shoikhet 2007
Let $g_1$ and $g_2$ be two dg Lie algebras, then it is well-known that the $L_infty$ morphisms from $g_1$ to $g_2$ are in 1-1 correspondence to the solutions of the Maurer-Cartan equation in some dg Lie algebra $Bbbk(g_1,g_2)$. Then the gauge action by exponents of the zero degree component $Bbbk(g_1,g_2)^0$ on $MCsubsetBbbk(g_1,g_2)^1$ gives an explicit homotopy relation between two $L_infty$ morphisms. We prove that the quotient category by this relation (that is, the category whose objects are $L_infty$ algebras and morphisms are $L_infty$ morphisms modulo the gauge relation) is well-defined, and is a localization of the category of dg Lie algebras and dg Lie maps by quasi-isomorphisms. As localization is unique up to an equivalence, it is equivalent to the Quillen-Hinich homotopical category of dg Lie algebras [Q1,2], [H1,2]. Moreover, we prove that the Quillens concept of a homotopy coincides with ours. The last result was conjectured by V.Dolgushev [D].
In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto-Reutenauer algebra of permutations and the Loday-Ronco algebra of binary trees. Connecting algebra maps arise from a new generalization of the Tonks projection from the permutohedron to the associahedron, which we discover via the viewpoint of the graph associahedra of Carr and Devadoss. At the same time that viewpoint allows exciting geometrical insights into the multiplicative structure of the algebras involved. Extending the Tonks projection also reveals a new graded algebra structure on the simplices. Finally this latter is extended to a new graded Hopf algebra (one-sided) with basis all the faces of the simplices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا