Do you want to publish a course? Click here

An explicit construction of the Quillen homotopical category of dg Lie algebras

137   0   0.0 ( 0 )
 Added by Boris Shoikhet
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

Let $g_1$ and $g_2$ be two dg Lie algebras, then it is well-known that the $L_infty$ morphisms from $g_1$ to $g_2$ are in 1-1 correspondence to the solutions of the Maurer-Cartan equation in some dg Lie algebra $Bbbk(g_1,g_2)$. Then the gauge action by exponents of the zero degree component $Bbbk(g_1,g_2)^0$ on $MCsubsetBbbk(g_1,g_2)^1$ gives an explicit homotopy relation between two $L_infty$ morphisms. We prove that the quotient category by this relation (that is, the category whose objects are $L_infty$ algebras and morphisms are $L_infty$ morphisms modulo the gauge relation) is well-defined, and is a localization of the category of dg Lie algebras and dg Lie maps by quasi-isomorphisms. As localization is unique up to an equivalence, it is equivalent to the Quillen-Hinich homotopical category of dg Lie algebras [Q1,2], [H1,2]. Moreover, we prove that the Quillens concept of a homotopy coincides with ours. The last result was conjectured by V.Dolgushev [D].



rate research

Read More

In this paper, we study weakly unital dg categories as they were defined by Kontsevich and Soibelman [KS, Sect.4]. We construct a cofibrantly generated Quillen model structure on the category $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ of small weakly unital dg categories over a field $Bbbk$. Our model structure can be thought of as an extension of the model structure on the category $mathrm{Cat}_{mathrm{dg}}(Bbbk)$ of (strictly unital) small dg categories over $Bbbk$, due to Tabuada [Tab]. More precisely, we show that the imbedding of $mathrm{Cat}_{mathrm{dg}}(Bbbk)$ to $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ is a right adjoint of a Quillen pair of functors. We prove that this Quillen pair is, in turn, a Quillen equivalence. In course of the proof, we study a non-symmetric dg operad $mathcal{O}$, governing the weakly unital dg categories, which is encoded in the Kontsevich-Soibelman definition. We prove that this dg operad is quasi-isomorphic to the operad $mathrm{Assoc}_+$ of unital associative algebras.
We show that the celebrated operad of pre-Lie algebras is very rigid: it has no non-obvious degrees of freedom from either of the three points of view: deformations of maps to and from the three graces of operad theory, homotopy automorphisms, and operadic twisting. Examining the latter, it is possible to answer two questions of Markl from 2005, including a Lie-theoretic version of the Deligne conjecture.
168 - Michael Joachim 2007
In this article we build a Quillen model category structure on the category of sequentially complete l.m.c.-C*-algebras such that the corresponding homotopy classes of maps Ho(A,B) for separable C*-algebras A and B coincide with the Kasparov groups KK(A,B). This answers an open question posed by Mark Hovey about the possibility of describing KK-theory for C*-algebras using the language of Quillen model categories.
253 - Frederic Chapoton 2007
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا