Do you want to publish a course? Click here

A clustering-based biased Monte Carlo approach to protein titration curve prediction

63   0   0.0 ( 0 )
 Added by Nathan Baker
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

In this work, we developed an efficient approach to compute ensemble averages in systems with pairwise-additive energetic interactions between the entities. Methods involving full enumeration of the configuration space result in exponential complexity. Sampling methods such as Markov Chain Monte Carlo (MCMC) algorithms have been proposed to tackle the exponential complexity of these problems; however, in certain scenarios where significant energetic coupling exists between the entities, the efficiency of the such algorithms can be diminished. We used a strategy to improve the efficiency of MCMC by taking advantage of the cluster structure in the interaction energy matrix to bias the sampling. We pursued two different schemes for the biased MCMC runs and show that they are valid MCMC schemes. We used both synthesized and real-world systems to show the improved performance of our biased MCMC methods when compared to the regular MCMC method. In particular, we applied these algorithms to the problem of estimating protonation ensemble averages and titration curves of residues in a protein.



rate research

Read More

Background: Typically, proteins perform key biological functions by interacting with each other. As a consequence, predicting which protein pairs interact is a fundamental problem. Experimental methods are slow, expensive, and may be error prone. Many computational methods have been proposed to identify candidate interacting pairs. When accurate, they can serve as an inexpensive, preliminary filtering stage, to be followed by downstream experimental validation. Among such methods, sequence-based ones are very promising. Results: We present MPS(T&B) (Maximum Protein Similarity Topological and Biological), a new algorithm that leverages both topological and biological information to predict protein-protein interactions. We comprehensively compare MPS(T) and MPS(T&B) with state-of-the-art approaches on reliable PPIs datasets, showing that they have competitive or higher accuracy on biologically validated test sets. Conclusion: MPS(T) and MPS(T&B) are topological only and topological plus sequence-based computational methods that can effectively predict the entire human interactome.
184 - G. Vernizzi , H. Orland , A. Zee 2004
In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.
90 - Yan Y. Tseng , Jie Liang 2006
The amino acid sequences of proteins provide rich information for inferring distant phylogenetic relationships and for predicting protein functions. Estimating the rate matrix of residue substitutions from amino acid sequences is also important because the rate matrix can be used to develop scoring matrices for sequence alignment. Here we use a continuous time Markov process to model the substitution rates of residues and develop a Bayesian Markov chain Monte Carlo method for rate estimation. We validate our method using simulated artificial protein sequences. Because different local regions such as binding surfaces and the protein interior core experience different selection pressures due to functional or stability constraints, we use our method to estimate the substitution rates of local regions. Our results show that the substitution rates are very different for residues in the buried core and residues on the solvent exposed surfaces. In addition, the rest of the proteins on the binding surfaces also have very different substitution rates from residues. Based on these findings, we further develop a method for protein function prediction by surface matching using scoring matrices derived from estimated substitution rates for residues located on the binding surfaces. We show with examples that our method is effective in identifying functionally related proteins that have overall low sequence identity, a task known to be very challenging.
144 - Yeji Wang , Shuo Wu , Yanwen Duan 2021
There is great interest to develop artificial intelligence-based protein-ligand affinity models due to their immense applications in drug discovery. In this paper, PointNet and PointTransformer, two pointwise multi-layer perceptrons have been applied for protein-ligand affinity prediction for the first time. Three-dimensional point clouds could be rapidly generated from the data sets in PDBbind-2016, which contain 3 772 and 11 327 individual point clouds derived from the refined or/and general sets, respectively. These point clouds were used to train PointNet or PointTransformer, resulting in protein-ligand affinity prediction models with Pearson correlation coefficients R = 0.831 or 0.859 from the larger point clouds respectively, based on the CASF-2016 benchmark test. The analysis of the parameters suggests that the two deep learning models were capable to learn many interactions between proteins and their ligands, and these key atoms for the interaction could be visualized in point clouds. The protein-ligand interaction features learned by PointTransformer could be further adapted for the XGBoost-based machine learning algorithm, resulting in prediction models with an average Rp of 0.831, which is on par with the state-of-the-art machine learning models based on PDBbind database. These results suggest that point clouds derived from the PDBbind datasets are useful to evaluate the performance of 3D point clouds-centered deep learning algorithms, which could learn critical protein-ligand interactions from natural evolution or medicinal chemistry and have wide applications in studying protein-ligand interactions.
Understanding protein structure-function relationships is a key challenge in computational biology, with applications across the biotechnology and pharmaceutical industries. While it is known that protein structure directly impacts protein function, many functional prediction tasks use only protein sequence. In this work, we isolate protein structure to make functional annotations for proteins in the Protein Data Bank in order to study the expressiveness of different structure-based prediction schemes. We present PersGNN - an end-to-end trainable deep learning model that combines graph representation learning with topological data analysis to capture a complex set of both local and global structural features. While variations of these techniques have been successfully applied to proteins before, we demonstrate that our hybridized approach, PersGNN, outperforms either method on its own as well as a baseline neural network that learns from the same information. PersGNN achieves a 9.3% boost in area under the precision recall curve (AUPR) compared to the best individual model, as well as high F1 scores across different gene ontology categories, indicating the transferability of this approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا