Do you want to publish a course? Click here

Prediction of RNA pseudoknots by Monte Carlo simulations

185   0   0.0 ( 0 )
 Added by Graziano Vernizzi
 Publication date 2004
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

In this paper we consider the problem of RNA folding with pseudoknots. We use a graphical representation in which the secondary structures are described by planar diagrams. Pseudoknots are identified as non-planar diagrams. We analyze the non-planar topologies of RNA structures and propose a classification of RNA pseudoknots according to the minimal genus of the surface on which the RNA structure can be embedded. This classification provides a simple and natural way to tackle the problem of RNA folding prediction in presence of pseudoknots. Based on that approach, we describe a Monte Carlo algorithm for the prediction of pseudoknots in an RNA molecule.



rate research

Read More

We propose a new topological characterization of RNA secondary structures with pseudoknots based on two topological invariants. Starting from the classic arc-representation of RNA secondary structures, we consider a model that couples both I) the topological genus of the graph and II) the number of crossing arcs of the corresponding primitive graph. We add a term proportional to these topological invariants to the standard free energy of the RNA molecule, thus obtaining a novel free energy parametrization which takes into account the abundance of topologies of RNA pseudoknots observed in RNA databases.
RNA/protein interactions play crucial roles in controlling gene expression. They are becoming important targets for pharmaceutical applications. Due to RNA flexibility and to the strength of electrostatic interactions, standard docking methods are insufficient. We here present a computational method which allows studying the binding of RNA molecules and charged peptides with atomistic, explicit-solvent molecular dynamics. In our method, a suitable estimate of the electrostatic interaction is used as an order parameter (collective variable) which is then accelerated using bi-directional pulling simulations. Since the electrostatic interaction is only used to enhance the sampling, the approximations used to compute it do not affect the final accuracy. The method is employed to characterize the binding of TAR RNA from HIV-1 and a small cyclic peptide. Our simulation protocol allows blindly predicting the binding pocket and pose as well as the binding affinity. The method is general and could be applied to study other electrostatics-driven binding events.
107 - G. Vernizzi , H. Orland , A. Zee 2004
We enumerate the number of RNA contact structures according to their genus, i.e. the topological character of their pseudoknots. By using a recently proposed matrix model formulation for the RNA folding problem, we obtain exact results for the simple case of an RNA molecule with an infinitely flexible backbone, in which any arbitrary pair of bases is allowed. We analyze the distribution of the genus of pseudoknots as a function of the total number of nucleotides along the phosphate-sugar backbone.
We present a novel topological classification of RNA secondary structures with pseudoknots. It is based on the topological genus of the circular diagram associated to the RNA base-pair structure. The genus is a positive integer number, whose value quantifies the topological complexity of the folded RNA structure. In such a representation, planar diagrams correspond to pure RNA secondary structures and have zero genus, whereas non planar diagrams correspond to pseudoknotted structures and have higher genus. We analyze real RNA structures from the databases wwPDB and Pseudobase, and classify them according to their topological genus. We compare the results of our statistical survey with existing theoretical and numerical models. We also discuss possible applications of this classification and show how it can be used for identifying new RNA structural motifs.
72 - J. B. Lucks , Y. Kafri 2007
We present a simplified model of the dynamics of translocation of RNA through a nanopore which only allows the passage of unbound nucleotides. In particular, we consider the disorder averaged translocation dynamics of random, two-component, single-stranded nucleotides, by reducing the dynamics to the motion of a random walker on a one-dimensional free energy landscape of translocation. These translocation landscapes are calculated from the folds of the RNA sequences and the voltage bias applied across the nanopore. We compute these landscapes for 1500 randomly drawn two-letter sequences of length 4000. Simulations of the dynamics on these landscapes display anomalous characteristics, similar to random forcing energy landscapes, where the translocation process proceeds slower than linearly in time for sufficiently small voltage biases across the nanopore, but moves linearly in time at large voltage biases. We argue that our simplified model provides an upper bound to the more realistic translocation dynamics, and thus we expect that all RNA translocation models will exhibit anomalous regimes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا