Do you want to publish a course? Click here

Simultaneous Sorting of Wavelengths and Spatial Modes using Multi-Plane Light Conversion

346   0   0.0 ( 0 )
 Added by Yuanhang Zhang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a wavelength-mode sorter realized by multi-plane light conversion (MPLC). For the first time, to our best knowledge, wavelengths and spatial modes can be sorted simultaneously. We first demonstrate pure wavelength sorting by a series of phase masks, which could find applications in high-power wavelength beam combining (WBC) or coarse wavelength-division multiplexing (CWDM), for example. We then present a design of a 4-wavelength, 3-mode sorter using only 5 phase masks. Insertion loss (IL) and mode dependent loss (MDL) as low as 1.27 dB and 2.45 dB can be achieved, respectively.



rate research

Read More

In this work, we study the effect of beam deviation angle at the reception side and calculate the theoretical demultiplexed collected energy for up to 15 modes, investigating the influence of the ratio between incoming beam size and fundamental HG modes waist. We show this approach greatly enhances the collection efficiency, tolerating tip-tilt error of more than 3 times compared to a Gaussian beam alone. We also show that, depending on wait size, a trade-off between collection efficiency at small angles and maximum acceptance angle can be achieved.
We designed and built a new type of spatial mode multiplexer, based on Multi-Plane Light Conversion (MPLC), with very low intrinsic loss and high mode selectivity. In this first demonstration we show that a typical 3-mode multiplexer achieves a mode selectivity better than -23 dB and a total insertion efficiency of -4.1 dB (optical coating improvements could increase efficiency to -2.4 dB), across the full C-band. Moreover this multiplexer is able to perform any mode conversion, and we demonstrate its performance for the first 6 eigenmodes of a few-mode fiber: LP$_{01}$, LP$_{11mathrm{a}}$, LP$_{11mathrm{b}}$, LP$_{02}$, LP$_{21mathrm{a}}$ and LP$_{21mathrm{b}}$.
Spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information. Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask such as a spatial light modulator or digital micromirror device. The process of updating the spatial mode of light can be greatly accelerated by multiplexing a set of static phase masks with a fast, image-preserving optical switch, such as an acousto-optic modulator (AOM). We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states with a switching rate of up to 500 kHz. We then apply this system to perform fast quantum state tomography of spatial modes of light in a 2-dimensional Hilbert space, by projecting the unknown state onto six spatial modes comprising three mutually unbiased bases. We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
Space Division Multiplexing (SMD) is a very attractive technique for addressing the ever-growing demands in transmission capacity by enabling the use of a new parameter textemdash space textemdash to increase the number of channels in multi-mode fibers. One key component to build a spatially multiplexed-based optical network is a spatial multiplexer and demultiplexer combining signals from multiple single-mode fibers into as many channels in a multi-mode fiber. In this article, we report the fabrication and characterization of a pair of 45-mode spatial multiplexer and demultiplexer saturating all the modes of a standard 50~$mu$m core graded-index (OM2) multi-mode fiber. The multiplexers are based on Multi-Plane Light Conversion (MPLC), a technique that enables the control of the transverse shape of the light by multiple reflections on specifically designed phase plates. We show that by using a separable variable basis of modes, such as Hermite-Gaussian (HG) modes, we are able to drastically reduce the number of reflections hence reducing the insertion losses and modal crosstalks. The multiplexers typically show an average 4~dB insertion loss and -28~dB cross-talk across the C band. Finally, we emphasize the use of this higher-order modes multiplexer to explore the propagation properties inside multi-mode fibers and more specifically the mode group crosstalks as well as the impact of fiber bending.
Analyses based on quantum metrology have shown that the ability to localize the positions of two incoherent point sources can be significantly enhanced through the use of mode sorting. Here we theoretically and experimentally investigate the effect of partial coherence on the sub-diffraction limit localization of two sources based on parity sorting. With the prior information of a negative and real-valued degree of coherence, higher Fisher information is obtained than that for the incoherent case. Our results pave the way to clarifying the role of coherence in quantum limited metrology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا