Do you want to publish a course? Click here

Analysis of XMM-Newton Observations of Supernova Remnant W49B and Clues to the Progenitor

202   0   0.0 ( 0 )
 Added by Vikram Dwarkadas
 Publication date 2020
  fields Physics
and research's language is English
 Authors Jared Siegel




Ask ChatGPT about the research

W49B is a supernova remnant (SNR) discovered over 60 years ago in early radio surveys. It has since been observed over the entire wavelength range, with the X-ray morphology resembling a centrally-filled SNR. The nature of its progenitor star is still debated. Applying Smoothed Particle Inference techniques to analyze the X-Ray emission from W49B, we characterize the morphology and abundance distribution over the entire remnant. We also infer the density structure and derive the mass of individual elements present in the plasma. The morphology is consistent with an interaction between the remnant and a dense medium along the eastern edge, and some obstruction towards the west. We find a total mass of 130 $(pm 16)$ M$_{odot}$ and an estimated ejecta mass of 1.2 $(pm 0.2)$ M$_{odot}$. Comparison of the inferred abundance values and individual element masses with a wide selection of SN models suggests that deflagration-to-detonation (DDT) Type Ia models are the most compatible, with Fe abundance being the major discriminating factor. The general agreement between our abundance measurements and those from previous studies suggests that disagreement between various authors is more likely due to the choice of models used for comparison, rather than the abundance values themselves. While our abundance results lean toward a Type Ia origin, ambiguities in the interpretation of various morphological and spectral characteristics of W49B do not allow us to provide a definitive classification.



rate research

Read More

We present an XMM-Newton observation of the highly polarized low-surface brightness supernova remnant G107.5-1.5, discovered with the Canadian Galactic Plane Survey (CGPS). We do not detect diffuse X-ray emission from the SNR and set an upper limit on the surface brightness of ~2 x 10^30 erg arcmin^-2 s^-1, at an assumed distance of 1.1 kpc. We found eight bright point sources in the field, including the ROSAT source 1RXS J225203.8+574249 near the centre of the radio shell. Spectroscopic analysis of some of the embedded point sources, including the ROSAT source, has been performed, and all eight sources are most likely ruled out as the associated neutron star, primarily due to counterpart bright stars in optical and infrared bands. Timing analysis of the bright point sources yielded no significant evidence for pulsations, but, due to the timing resolution, only a small part of the frequency space could be searched. An additional ten fainter point sources were identified in the vicinity of the SNR. Further X-ray observation of these and the region in the vicinity of the radio shell may be warranted.
Recent X-ray studies revealed over-ionized recombining plasmas (RPs) in a dozen mixed-morphology (MM) supernova remnants (SNRs). However, the physical process of the over-ionization has not been fully understood yet. Here we report on spatially resolved spectroscopy of X-ray emission from W44, one of the over-ionized MM-SNRs, using XMM-Newton data from deep observations, aiming to clarify the physical origin of the over-ionization. We find that combination of low electron temperature and low recombination timescale is achieved in the region interacting with dense molecular clouds. Moreover, a clear anti-correlation between the electron temperature and the recombining timescale is obtained from each of the regions with and without the molecular clouds. The results are well explained if the plasma was over-ionized by rapid cooling through thermal conduction with the dense clouds hit by the blast wave of W44. Given that a few other over-ionized SNRs show evidence for adiabatic expansion as the major driver of the rapid cooling, our new result indicates that both processes can contribute to over-ionization in SNRs, with the dominant channel depending on the evolutionary stage.
(Abridged) We present a spatial and spectral X-ray analysis of the Galactic supernova remnant (SNR) G352.7-0.1 using archival data from observations made with XMM-Newton and Chandra. Prior X-ray observations of this SNR revealed a thermal center-filled morphology which contrasts with a shell-like radio morphology, thus establishing G352.7$-$0.1 as a mixed-morphology SNR (MMSNRs). Our study confirms that the X-ray emission comes from the SNR interior and must be ejecta-dominated. Spectra obtained with XMM-Newton may be fit satisfactorily with a single thermal component (namely a non-equilibrium ionization component with enhanced abundances of silicon and sulfur). In contrast, spectra extracted by Chandra from certain regions of the SNR cannot always be fit by a single thermal component. For those regions, a second thermal component with solar abundances or two thermal components with different temperatures and thawed silicon and sulfur abundances (respectively) can generate a statistically-acceptable fit. We argue that the former scenario is more physically-plausible: based on parameters of our spectral fits, we calculate physical parameters including X-ray-emitting mass (about 45 solar masses, for solar abundances). We find no evidence for overionization in the X-ray emitting plasma associated with the SNR: this phenomenon has been seen in other MMSNRs. We have conducted a search for a neutron star within the SNR using a hard (2-10 keV) Chandra image but could not identify a firm candidate. We also present (for the first time) the detection of infrared emission from this SNR as detected at 24 micron by MIPS aboard Spitzer. Finally, we discuss the properties of G352.7-0.1 in the context of other ejecta-dominated MMSNRs.
Aims. We report the first detailed X-ray study of the supernova remnant (SNR) G304.6+0.1, achieved with the XMM-Newton mission. Methods. The powerful imaging capability of XMM-Newton was used to study the X-ray characteristics of the remnant at different energy ranges. The X-ray morphology and spectral properties were analyzed. In addittion, radio and mid-infrared data obtained with the Molonglo Observatory Synthesis Telescope and the Spitzer Space Telescope were used to study the association with the detected X-ray emission and to understand the structure of the SNR at differents wavelengths. Results. The SNR shows an extended and arc-like internal structure in the X-ray band with out a compact point-like source inside the remnant. We find a high column density of NH in the range 2.5-3.5x1022 cm-2, which supports a relatively distant location (d $geq$ 9.7 kpc). The X-ray spectrum exhibits at least three emission lines, indicating that the X-ray emission has a thin thermal plasma origin, although a non-thermal contribution cannot be discarded. The spectra of three different regions (north, center and south) are well represented by a combination of a non-equilibrium ionization (PSHOCK) and a power-law (PL) model. The mid-infrared observations show a bright filamentary structure along the north-south direction coincident with the NW radio shell. This suggests that Kes 17 is propagating in a non-uniform environment with high density and that the shock front is interacting with several adjacent massive molecular clouds. The good correspondence of radio and mid-infrared emissions suggests that the filamentary features are caused by shock compression. The X-ray characteristics and well-known radio parameters indicate that G304.6+0.1 is a middle-aged SNR (2.8-6.4)x104 yr old and a new member of the recently proposed group of mixed-morphology SNRs.
The supernova remnant (SNR) W51C is a Galactic object located in a strongly inhomogeneous interstellar medium with signs of an interaction of the SNR blast wave with dense molecular gas. Diffuse X-ray emission from the interior of the SNR can reveal element abundances in the different emission regions and shed light on the type of supernova (SN) explosion and its progenitor. The hard X-ray emission helps to identify possible candidates for a pulsar formed in the SN explosion and for its pulsar wind nebula (PWN). We have analysed X-ray data obtained with XMM-Newton. Spectral analyses in selected regions were performed. Ejecta emission in the bright western part of the SNR, located next to a complex of dense molecular gas, was confirmed. The Ne and Mg abundances suggest a massive progenitor with a mass of > 20 M_sun. Two extended regions emitting hard X-rays were identified (corresponding to the known sources [KLS2002] HX3 west and CXO J192318.5+140305 discovered with ASCA and Chandra, respectively), each of which has an additional point source inside and shows a power-law spectrum with Gamma ~ 1.8. Based on their X-ray emission, both sources can be classified as PWN candidates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا