Do you want to publish a course? Click here

MEEP: An Open-Source Platform for Human-Human Dialog Collection and End-to-End Agent Training

133   0   0.0 ( 0 )
 Added by Christopher Chu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We create a new task-oriented dialog platform (MEEP) where agents are given considerable freedom in terms of utterances and API calls, but are constrained to work within a push-button environment. We include facilities for collecting human-human dialog corpora, and for training automatic agents in an end-to-end fashion. We demonstrate MEEP with a dialog assistant that lets users specify trip destinations.



rate research

Read More

267 - Suyoun Kim , Florian Metze 2018
Existing speech recognition systems are typically built at the sentence level, although it is known that dialog context, e.g. higher-level knowledge that spans across sentences or speakers, can help the processing of long conversations. The recent progress in end-to-end speech recognition systems promises to integrate all available information (e.g. acoustic, language resources) into a single model, which is then jointly optimized. It seems natural that such dialog context information should thus also be integrated into the end-to-end models to improve further recognition accuracy. In this work, we present a dialog-context aware speech recognition model, which explicitly uses context information beyond sentence-level information, in an end-to-end fashion. Our dialog-context model captures a history of sentence-level context so that the whole system can be trained with dialog-context information in an end-to-end manner. We evaluate our proposed approach on the Switchboard conversational speech corpus and show that our system outperforms a comparable sentence-level end-to-end speech recognition system.
Previous human parsing models are limited to parsing humans into pre-defined classes, which is inflexible for applications that need to handle new classes. In this paper, we define a new one-shot human parsing (OSHP) task that requires parsing humans into an open set of classes defined by any test example. During training, only base classes are exposed, which only overlap with part of test-time classes. To address three main challenges in OSHP, i.e., small sizes, testing bias, and similar parts, we devise a novel End-to-end One-shot human Parsing Network (EOP-Net). Firstly, an end-to-end human parsing framework is proposed to mutually share semantic information with different granularities and help recognize the small-size human classes. Then, we devise two collaborative metric learning modules to learn representative prototypes for base classes, which can quickly adapt to unseen classes and mitigate the testing bias. Moreover, we empirically find that robust prototypes empower feature representations with higher transferability to the novel concepts, hence, we propose to adopt momentum-updated dynamic prototypes generated by gradually smoothing the training time prototypes and employ contrastive loss at the prototype level. Experiments on three popular benchmarks tailored for OSHP demonstrate that EOP-Net outperforms representative one-shot segmentation models by large margins, which serves as a strong benchmark for further research on this new task. The source code will be made publicly available.
A long-term goal of machine learning is to build intelligent conversational agents. One recent popular approach is to train end-to-end models on a large amount of real dialog transcripts between humans (Sordoni et al., 2015; Vinyals & Le, 2015; Shang et al., 2015). However, this approach leaves many questions unanswered as an understanding of the precise successes and shortcomings of each model is hard to assess. A contrasting recent proposal are the bAbI tasks (Weston et al., 2015b) which are synthetic data that measure the ability of learning machines at various reasoning tasks over toy language. Unfortunately, those tests are very small and hence may encourage methods that do not scale. In this work, we propose a suite of new tasks of a much larger scale that attempt to bridge the gap between the two regimes. Choosing the domain of movies, we provide tasks that test the ability of models to answer factual questions (utilizing OMDB), provide personalization (utilizing MovieLens), carry short conversations about the two, and finally to perform on natural dialogs from Reddit. We provide a dataset covering 75k movie entities and with 3.5M training examples. We present results of various models on these tasks, and evaluate their performance.
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemission spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at $3^{text{rd}}$ and $4^{text{th}}$ generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.
The problem of task planning for artificial agents remains largely unsolved. While there has been increasing interest in data-driven approaches for the study of task planning for artificial agents, a significant remaining bottleneck is the dearth of large-scale comprehensive task-based datasets. In this paper, we present ActioNet, an interactive end-to-end platform for data collection and augmentation of task-based dataset in 3D environment. Using ActioNet, we collected a large-scale comprehensive task-based dataset, comprising over 3000 hierarchical task structures and videos. Using the hierarchical task structures, the videos are further augmented across 50 different scenes to give over 150,000 video. To our knowledge, ActioNet is the first interactive end-to-end platform for such task-based dataset generation and the accompanying dataset is the largest task-based dataset of such comprehensive nature. The ActioNet platform and dataset will be made available to facilitate research in hierarchical task planning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا