No Arabic abstract
The current energy transition imposes a rapid implementation of energy storage systems with high energy density and eminent regeneration and cycling efficiency. Metal hydrides are potential candidates for generalized energy storage, when coupled with fuel cell units and/or batteries. An overview of ongoing research is reported and discussed in this review work on the light of application as hydrogen and heat storage matrices, as well as thin films for hydrogen optical sensors. These include a selection of single-metal hydrides, Ti-V(Fe) based intermetallics, multi-principal element alloys (high-entropy alloys), and a series of novel synthetically accessible metal borohydrides. Metal hydride materials can be as well of important usefulness for MH-based electrodes with high capacity (e.g. MgH2 ~ 2000 mAh g-1) and solid-state electrolytes displaying high ionic conductivity suitable, respectively, for Li-ion and Li/Mg battery technologies. To boost further research and development directions some characterization techniques dedicated to the study of M-H interactions, their equilibrium reactions, and additional quantification of hydrogen concentration in thin film and bulk hydrides are presented at the end of this manuscript.
The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials.
We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations. All these compounds are large gap insulators with GW single particle band gaps varying from 3.5 eV in AlH3 to 6.5 eV in the MAlH4 compounds. The valence bands are dominated by the hydrogen atoms, whereas the conduction bands have mixed contributions from the hydrogens and the metal cations. The electronic structure of the aluminium compounds is determined mainly by aluminium hydride complexes and their mutual interactions. Despite considerable differences between the band structures and the band gaps of the various compounds, their optical responses are qualitatively similar. In most of the spectra the optical absorption rises sharply above 6 eV and has a strong peak around 8 eV. The quantitative differences in the optical spectra are interpreted in terms of the structure and the electronic structure of the compounds.
Dielectric and antiferroelectric materials are particularly promising for high-power energy-storage applications. However, relatively low energy density greatly hinders their usage in storage technologies. Here, we report first-principles-based calculations predicting that epitaxial and initially non-polar AlN/ScN superlattices can achieve an ultrahigh energy density of up to 200 J/cm$^{textrm{3}}$, accompanied by an ideal efficiency of 100%. We also show that high energy density requires the system being neither too close nor too far from a ferroelectric phase transition under zero electric field. A phenomenological model is further proposed to rationalize such striking features.
Using first principles calculations, we show the high hydrogen storage capacity of a new class of compounds, metalloboranes. Metalloboranes are transition metal (TM) and borane compounds that obey a novel-bonding scheme. We have found that the transition metal atoms can bind up to 10 H2 molecules.
Adding thermal conductivity enhancements to increase thermal power in solid-liquid phase-change thermal energy storage modules compromises volumetric energy density and often times reduces the mass and volume of active phase change material (PCM) by well over half. In this study, a new concept of building thermal energy storage modules using high-conductivity, solid-solid, shape memory alloys is demonstrated to eliminate this trade-off and enable devices that have both high heat transfer rate and high thermal capacity. Nickel titanium, Ni50.28Ti49.36, was solution heat treated and characterized using differential scanning calorimetry and Xenon Flash to determine transformation temperature (78deg-C), latent heat (183 kJm-3), and thermal conductivity in the Austenite and Martensite phases (12.92/12.64 Wm-1K-1). Four parallel-plate thermal energy storage demonstrators were designed, fabricated, and tested in a thermofluidic test setup. These included a baseline sensible heating module (aluminum), a conventional solid-liquid PCM module (aluminum/1-octadecanol), an all-solid-solid PCM module (Ni50.28Ti49.36), and a composite solid-solid/solid-liquid PCM module (Ni50.28Ti49.36/1-octadecanol). By using high-conductivity solid-solid PCMs, and eliminating the need for encapsulants and conductivity enhancements, we are able to demonstrate a 1.73-3.38 times improvement in volumetric thermal capacity and a 2.03-3.21 times improvement in power density as compared to the conventional approaches. These experimental results are bolstered by analytical models to explain the observed heat transfer physics and reveal a 5.86 times improvement in thermal time constant. This work demonstrates the ability to build high-capacity and high-power thermal energy storage modules using multifunctional shape memory alloys and opens the door for leap ahead improvement in thermal energy storage performance.