Do you want to publish a course? Click here

A Survey of Deep Meta-Learning

60   0   0.0 ( 0 )
 Added by Mike Huisman
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep neural networks can achieve great successes when presented with large data sets and sufficient computational resources. However, their ability to learn new concepts quickly is limited. Meta-learning is one approach to address this issue, by enabling the network to learn how to learn. The field of Deep Meta-Learning advances at great speed, but lacks a unified, in-depth overview of current techniques. With this work, we aim to bridge this gap. After providing the reader with a theoretical foundation, we investigate and summarize key methods, which are categorized into i)~metric-, ii)~model-, and iii)~optimization-based techniques. In addition, we identify the main open challenges, such as performance evaluations on heterogeneous benchmarks, and reduction of the computational costs of meta-learning.



rate research

Read More

421 - Zhuangdi Zhu , Kaixiang Lin , 2020
Reinforcement Learning (RL) is a key technique to address sequential decision-making problems and is crucial to realize advanced artificial intelligence. Recent years have witnessed remarkable progress in RL by virtue of the fast development of deep neural networks. Along with the promising prospects of RL in numerous domains, such as robotics and game-playing, transfer learning has arisen as an important technique to tackle various challenges faced by RL, by transferring knowledge from external expertise to accelerate the learning process. In this survey, we systematically investigate the recent progress of transfer learning approaches in the context of deep reinforcement learning. Specifically, we provide a framework for categorizing the state-of-the-art transfer learning approaches, under which we analyze their goals, methodologies, compatible RL backbones, and practical applications. We also draw connections between transfer learning and other relevant topics from the RL perspective and explore their potential challenges as well as open questions that await future research progress.
Meta-learning empowers artificial intelligence to increase its efficiency by learning how to learn. Unlocking this potential involves overcoming a challenging meta-optimisation problem that often exhibits ill-conditioning, and myopic meta-objectives. We propose an algorithm that tackles these issues by letting the meta-learner teach itself. The algorithm first bootstraps a target from the meta-learner, then optimises the meta-learner by minimising the distance to that target under a chosen (pseudo-)metric. Focusing on meta-learning with gradients, we establish conditions that guarantee performance improvements and show that the improvement is related to the target distance. Thus, by controlling curvature, the distance measure can be used to ease meta-optimization, for instance by reducing ill-conditioning. Further, the bootstrapping mechanism can extend the effective meta-learning horizon without requiring backpropagation through all updates. The algorithm is versatile and easy to implement. We achieve a new state-of-the art for model-free agents on the Atari ALE benchmark, improve upon MAML in few-shot learning, and demonstrate how our approach opens up new possibilities by meta-learning efficient exploration in a Q-learning agent.
In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.
Owe to the recent advancements in Artificial Intelligence especially deep learning, many data-driven decision support systems have been implemented to facilitate medical doctors in delivering personalized care. We focus on the deep reinforcement learning (DRL) models in this paper. DRL models have demonstrated human-level or even superior performance in the tasks of computer vision and game playings, such as Go and Atari game. However, the adoption of deep reinforcement learning techniques in clinical decision optimization is still rare. We present the first survey that summarizes reinforcement learning algorithms with Deep Neural Networks (DNN) on clinical decision support. We also discuss some case studies, where different DRL algorithms were applied to address various clinical challenges. We further compare and contrast the advantages and limitations of various DRL algorithms and present a preliminary guide on how to choose the appropriate DRL algorithm for particular clinical applications.
The ability to learn new concepts with small amounts of data is a critical aspect of intelligence that has proven challenging for deep learning methods. Meta-learning has emerged as a promising technique for leveraging data from previous tasks to enable efficient learning of new tasks. However, most meta-learning algorithms implicitly require that the meta-training tasks be mutually-exclusive, such that no single model can solve all of the tasks at once. For example, when creating tasks for few-shot image classification, prior work uses a per-task random assignment of image classes to N-way classification labels. If this is not done, the meta-learner can ignore the task training data and learn a single model that performs all of the meta-training tasks zero-shot, but does not adapt effectively to new image classes. This requirement means that the user must take great care in designing the tasks, for example by shuffling labels or removing task identifying information from the inputs. In some domains, this makes meta-learning entirely inapplicable. In this paper, we address this challenge by designing a meta-regularization objective using information theory that places precedence on data-driven adaptation. This causes the meta-learner to decide what must be learned from the task training data and what should be inferred from the task testing input. By doing so, our algorithm can successfully use data from non-mutually-exclusive tasks to efficiently adapt to novel tasks. We demonstrate its applicability to both contextual and gradient-based meta-learning algorithms, and apply it in practical settings where applying standard meta-learning has been difficult. Our approach substantially outperforms standard meta-learning algorithms in these settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا