Do you want to publish a course? Click here

Modeling the commodity prices of base metals in Indian commodity market using a Higher Order Markovian Approach

63   0   0.0 ( 0 )
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

A Higher Order Markovian (HOM) model to capture the dynamics of commodity prices is proposed as an alternative to a Markovian model. In particular, the order of the former model, is taken to be the delay, in the response of the industry, to the market information. This is then empirically analyzed for the prices of Copper Mini and four other bases metals, namely Aluminum, Lead, Nickel and Zinc, in the Indian commodities market. In case of Copper Mini, the usage of the HOM approach consistently offer improvement, over the Markovian approach, in terms of the errors in forecasting. Similar trends were observed for the other base metals considered, with the exception of Aluminum, which can be attributed the volatility in the Asian market during the COVID-19 outbreak.



rate research

Read More

72 - Bin Li 2015
We introduce an agent-based model, in which agents set their prices to maximize profit. At steady state the market self-organizes into three groups: excess producers, consumers and balanced agents, with prices determined by their own resource level and a couple of macroscopic parameters that emerge naturally from the analysis, akin to mean-field parameters in statistical mechanics. When resources are scarce prices rise sharply below a turning point that marks the disappearance of excess producers. To compare the model with real empirical data, we study the relations between commodity prices and stock-to-use ratios of a range of commodities such as agricultural products and metals. By introducing an elasticity parameter to mitigate noise and long-term changes in commodities data, we confirm the trend of rising prices, provide evidence for turning points, and indicate yield points for less essential commodities.
We design three continuous--time models in finite horizon of a commodity price, whose dynamics can be affected by the actions of a representative risk--neutral producer and a representative risk--neutral trader. Depending on the model, the producer can control the drift and/or the volatility of the price whereas the trader can at most affect the volatility. The producer can affect the volatility in two ways: either by randomizing her production rate or, as the trader, using other means such as spreading false information. Moreover, the producer contracts at time zero a fixed position in a European convex derivative with the trader. The trader can be price-taker, as in the first two models, or she can also affect the volatility of the commodity price, as in the third model. We solve all three models semi--explicitly and give closed--form expressions of the derivative price over a small time horizon, preventing arbitrage opportunities to arise. We find that when the trader is price-taker, the producer can always compensate the loss in expected production profit generated by an increase of volatility by a gain in the derivative position by driving the price at maturity to a suitable level. Finally, in case the trader is active, the model takes the form of a nonzero-sum linear-quadratic stochastic differential game and we find that when the production rate is already at its optimal stationary level, there is an amount of derivative position that makes both players better off when entering the game.
This article presents a Hawkes process model with Markovian baseline intensities for high-frequency order book data modeling. We classify intraday order book trading events into a range of categories based on their order types and the price changes after their arrivals. To capture the stimulating effects between multiple types of order book events, we use the multivariate Hawkes process to model the self- and mutually-exciting event arrivals. We also integrate a Markovian baseline intensity into the event arrival dynamic, by including the impacts of order book liquidity state and time factor to the baseline intensity. A regression-based non-parametric estimation procedure is adopted to estimate the model parameters in our Hawkes+Markovian model. To eliminate redundant model parameters, LASSO regularization is incorporated in the estimation procedure. Besides, model selection method based on Akaike Information Criteria is applied to evaluate the effect of each part of the proposed model. An implementation example based on real LOB data is provided. Through the example, we study the empirical shapes of Hawkes excitement functions, the effects of liquidity state as well as time factors, the LASSO variable selection, and the explanatory power of Hawkes and Markovian elements to the dynamics of the order book.
We propose the Hawkes flocking model that assesses systemic risk in high-frequency processes at the two perspectives -- endogeneity and interactivity. We examine the futures markets of WTI crude oil and gasoline for the past decade, and perform a comparative analysis with conditional value-at-risk as a benchmark measure. In terms of high-frequency structure, we derive the empirical findings. The endogenous systemic risk in WTI was significantly higher than that in gasoline, and the level at which gasoline affects WTI was constantly higher than in the opposite case. Moreover, although the relative influences degree was asymmetric, its difference has gradually reduced.
We present a Hawkes model approach to foreign exchange market in which the high frequency price dynamics is affected by a self exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizeable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering non-causal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا