No Arabic abstract
We present a Hawkes model approach to foreign exchange market in which the high frequency price dynamics is affected by a self exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizeable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering non-causal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.
We propose the Hawkes flocking model that assesses systemic risk in high-frequency processes at the two perspectives -- endogeneity and interactivity. We examine the futures markets of WTI crude oil and gasoline for the past decade, and perform a comparative analysis with conditional value-at-risk as a benchmark measure. In terms of high-frequency structure, we derive the empirical findings. The endogenous systemic risk in WTI was significantly higher than that in gasoline, and the level at which gasoline affects WTI was constantly higher than in the opposite case. Moreover, although the relative influences degree was asymmetric, its difference has gradually reduced.
This article presents a Hawkes process model with Markovian baseline intensities for high-frequency order book data modeling. We classify intraday order book trading events into a range of categories based on their order types and the price changes after their arrivals. To capture the stimulating effects between multiple types of order book events, we use the multivariate Hawkes process to model the self- and mutually-exciting event arrivals. We also integrate a Markovian baseline intensity into the event arrival dynamic, by including the impacts of order book liquidity state and time factor to the baseline intensity. A regression-based non-parametric estimation procedure is adopted to estimate the model parameters in our Hawkes+Markovian model. To eliminate redundant model parameters, LASSO regularization is incorporated in the estimation procedure. Besides, model selection method based on Akaike Information Criteria is applied to evaluate the effect of each part of the proposed model. An implementation example based on real LOB data is provided. Through the example, we study the empirical shapes of Hawkes excitement functions, the effects of liquidity state as well as time factors, the LASSO variable selection, and the explanatory power of Hawkes and Markovian elements to the dynamics of the order book.
We consider a 2-dimensional marked Hawkes process with increasing baseline intensity in order to model prices on electricity intraday markets. This model allows to represent different empirical facts such as increasing market activity, random jump sizes but above all microstructure noise through the signature plot. This last feature is of particular importance for practitioners and has not yet been modeled on those particular markets. We provide analytic formulas for first and second moments and for the signature plot, extending the classic results of Bacry et al. (2013) in the context of Hawkes processes with random jump sizes and time dependent baseline intensity. The tractable model we propose is estimated on German data and seems to fit the data well. We also provide a result about the convergence of the price process to a Brownian motion with increasing volatility at macroscopic scales, highlighting the Samuelson effect.
A Higher Order Markovian (HOM) model to capture the dynamics of commodity prices is proposed as an alternative to a Markovian model. In particular, the order of the former model, is taken to be the delay, in the response of the industry, to the market information. This is then empirically analyzed for the prices of Copper Mini and four other bases metals, namely Aluminum, Lead, Nickel and Zinc, in the Indian commodities market. In case of Copper Mini, the usage of the HOM approach consistently offer improvement, over the Markovian approach, in terms of the errors in forecasting. Similar trends were observed for the other base metals considered, with the exception of Aluminum, which can be attributed the volatility in the Asian market during the COVID-19 outbreak.
The extent to which a matching engine can cloud the modelling of underlying order submission and management processes in a financial market remains an unanswered concern with regards to market models. Here we consider a 10-variate Hawkes process with simple rules to simulate common order types which are submitted to a matching engine. Hawkes processes can be used to model the time and order of events, and how these events relate to each other. However, they provide a freedom with regards to implementation mechanics relating to the prices and volumes of injected orders. This allows us to consider a reference Hawkes model and two additional models which have rules that change the behaviour of limit orders. The resulting trade and quote data from the simulations are then calibrated and compared with the original order generating process to determine the extent with which implementation rules can distort model parameters. Evidence from validation and hypothesis tests suggest that the true model specification can be significantly distorted by market mechanics, and that practical considerations not directly due to model specification can be important with regards to model identification within an inherently asynchronous trading environment.