Do you want to publish a course? Click here

K2-111: an old system with two planets in near-resonance

75   0   0.0 ( 0 )
 Added by Annelies Mortier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper reports on the detailed characterisation of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved ($log g=4.17$), iron-poor ([Fe/H]$=-0.46$), but alpha-enhanced ([$alpha$/Fe]$=0.27$), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT shows that the transiting planet, K2-111b, orbits with a period $P_b=5.3518pm0.0004$ d, and has a planet radius of $1.82^{+0.11}_{-0.09}$ R$_oplus$ and a mass of $5.29^{+0.76}_{-0.77}$ M$_oplus$, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111c, with an orbital period of $15.6785pm 0.0064$ days, orbiting in near-3:1 mean-motion resonance with the transiting planet, and a minimum planet mass of $11.3pm1.1$ M$_oplus$. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.



rate research

Read More

K2-146 is a cool, 0.358 M_sun dwarf that was found to host a mini-Neptune with a 2.67-days period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of a further object in the system. Here we report the discovery of the previously undetected outer planet, K2-146 c, in the system using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97-day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti-correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 $pm$ 0.10 R_earth and a mass of 5.6 $pm$ 0.7 M_earth, whereas K2-146 c has a radius of $2.59_{-0.39}^{+1.81}$ R_earth and a mass of 7.1 $pm$ 0.9 M_earth. The inner and outer planets likely have moderate eccentricities of $e = 0.14 pm 0.07$ and $0.16 pm 0.07$, respectively. Long-term numerical integrations of the two-planet orbital solution show that it can be dynamically stable for at least 2 Myr. The evaluation of the resonance angles of the planet pair indicates that K2-146 b and c are likely trapped in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
We present spectroscopic measurements of the Rossiter-McLaughlin effect for the planet b of Kepler-9 multi-transiting planet system. The resulting sky-projected spin-orbit angle is $lambda=-13^{circ} pm 16^{circ}$, which favors an aligned system and strongly disfavors highly misaligned, polar, and retrograde orbits. Including Kepler-9, there are now a total of 4 Rossiter-McLaughlin effect measurements for multiplanet systems, all of which are consistent with spin-orbit alignment.
We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized (2.49$^{+0.34}_{-0.24} R_oplus$) planet (K2-66b) with a mass of 21.3 $pm$ 3.6 $M_oplus$. Because the star is evolving up the sub-giant branch, K2-66b receives a high level of irradiation, roughly twice the main sequence value. K2-66b may reside within the so-called photoevaporation desert, a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (< 5%) and perhaps no envelope at all, making it one of the largest planets without a significant envelope. K2-106 hosts an ultra-short-period planet ($P$ = 13.7 hrs) that is one of the hottest sub-Neptune-size planets discovered to date. Its radius (1.82$^{+0.20}_{-0.14} R_oplus$) and mass (9.0 $pm$ 1.6 $M_oplus$) are consistent with a rocky composition, as are all other small ultra-short-period planets with well-measured masses. K2-106 also hosts a larger, longer-period planet (Rp = 2.77$^{+0.37}_{-0.23} R_oplus$, $P$ = 13.3 days) with a mass less than 24.4 $M_oplus$ at 99.7% confidence. K2-66b and K2-106b probe planetary physics in extreme radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.
K2-19 hosts a planetary system composed of two outer planets, b and c, with size of $7.0pm 0.2~R_oplus$ and $4.1pm0.2~R_oplus$ , and an inner planet, d, with a radius of $1.11pm 0.05 R_oplus$. A recent analysis of Transit-Timing Variations (TTVs) suggested b and c are close to but not in 3:2 mean motion resonance (MMR) because the classical resonant angles circulate. Such an architecture challenges our understanding of planet formation. Indeed, planet migration through the protoplanetary disk should lead to a capture into the MMR. Here, we show that the planets are in fact, locked into the 3:2 resonance despite circulation of the conventional resonant angles and aligned periapses. However, we show that such an orbital configuration cannot be maintained for more than a few hundred million years due to the tidal dissipation experienced by planet d. The tidal dissipation remains efficient because of a secular forcing of the innermost planet eccentricity by planets b and c. While the observations strongly rule out an orbital solution where the three planets are on close to circular orbits, it remains possible that a fourth planet is affecting the TTVs such that the four planet system is consistent with the tidal constraints.
K2-138 is a moderately bright (V = 12.2, K = 10.3) main sequence K-star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3R_Earth) transiting planets in a compact architecture. The periods of the five planets are 2.35 d, 3.56 d, 5.40 d, 8.26 d, and 12.76 d, forming an unbroken chain of near 3:2 resonances. Although we do not detect the predicted 2-5 minute transit timing variations with the K2 timing precision, they may be observable by higher cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial velocity measurements, and therefore K2-138 could represent a new benchmark systems for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا