Do you want to publish a course? Click here

It takes two planets in resonance to tango around K2-146

306   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

K2-146 is a cool, 0.358 M_sun dwarf that was found to host a mini-Neptune with a 2.67-days period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of a further object in the system. Here we report the discovery of the previously undetected outer planet, K2-146 c, in the system using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97-day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti-correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 $pm$ 0.10 R_earth and a mass of 5.6 $pm$ 0.7 M_earth, whereas K2-146 c has a radius of $2.59_{-0.39}^{+1.81}$ R_earth and a mass of 7.1 $pm$ 0.9 M_earth. The inner and outer planets likely have moderate eccentricities of $e = 0.14 pm 0.07$ and $0.16 pm 0.07$, respectively. Long-term numerical integrations of the two-planet orbital solution show that it can be dynamically stable for at least 2 Myr. The evaluation of the resonance angles of the planet pair indicates that K2-146 b and c are likely trapped in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.

rate research

Read More

Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because, unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We show that mixing inputs, intermediate representations or embeddings along with target labels significantly improves representations and outperforms state-of-the-art metric learning methods on four benchmark datasets.
This paper reports on the detailed characterisation of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved ($log g=4.17$), iron-poor ([Fe/H]$=-0.46$), but alpha-enhanced ([$alpha$/Fe]$=0.27$), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT shows that the transiting planet, K2-111b, orbits with a period $P_b=5.3518pm0.0004$ d, and has a planet radius of $1.82^{+0.11}_{-0.09}$ R$_oplus$ and a mass of $5.29^{+0.76}_{-0.77}$ M$_oplus$, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111c, with an orbital period of $15.6785pm 0.0064$ days, orbiting in near-3:1 mean-motion resonance with the transiting planet, and a minimum planet mass of $11.3pm1.1$ M$_oplus$. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.
We describe our system for SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. We developed ensemble models using RoBERTa-based neural architectures, additional CRF layers, transfer learning between the two subtasks, and advanced post-processing to handle the multi-label nature of the task, the consistency between nested spans, repetitions, and labels from similar spans in training. We achieved sizable improvements over baseline fine-tuned RoBERTa models, and the official evaluation ranked our system 3rd (almost tied with the 2nd) out of 36 teams on the span identification subtask with an F1 score of 0.491, and 2nd (almost tied with the 1st) out of 31 teams on the technique classification subtask with an F1 score of 0.62.
Despite more than 20 years since the discovery of the first gas giant planet with an anomalously large radius, the mechanism for planet inflation remains unknown. Here, we report the discovery of EPIC228754001.01, an inflated gas giant planet found with the NASA K2 Mission, and a revised mass for another inflated planet, K2-97b. These planets reside on ~9 day orbits around host stars which recently evolved into red giants. We constrain the irradiation history of these planets using models constrained by asteroseismology and Keck/HIRES spectroscopy and radial velocity measurements. We measure planet radii of 1.31 +- 0.11 Rjup and and 1.30 +- 0.07 Rjup, respectively. These radii are typical for planets receiving the current irradiation, but not the former, zero age main sequence irradiation of these planets. This suggests that the current sizes of these planets are directly correlated to their current irradiation. Our precise constraints of the masses and radii of the stars and planets in these systems allow us to constrain the planetary heating efficiency of both systems as 0.03% +0.03%/-0.02%. These results are consistent with a planet re-inflation scenario, but suggest the efficiency of planet re-inflation may be lower than previously theorized. Finally, we discuss the agreement within 10% of stellar masses and radii, and planet masses, radii, and orbital periods of both systems and speculate that this may be due to selection bias in searching for planets around evolved stars.
We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized (2.49$^{+0.34}_{-0.24} R_oplus$) planet (K2-66b) with a mass of 21.3 $pm$ 3.6 $M_oplus$. Because the star is evolving up the sub-giant branch, K2-66b receives a high level of irradiation, roughly twice the main sequence value. K2-66b may reside within the so-called photoevaporation desert, a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (< 5%) and perhaps no envelope at all, making it one of the largest planets without a significant envelope. K2-106 hosts an ultra-short-period planet ($P$ = 13.7 hrs) that is one of the hottest sub-Neptune-size planets discovered to date. Its radius (1.82$^{+0.20}_{-0.14} R_oplus$) and mass (9.0 $pm$ 1.6 $M_oplus$) are consistent with a rocky composition, as are all other small ultra-short-period planets with well-measured masses. K2-106 also hosts a larger, longer-period planet (Rp = 2.77$^{+0.37}_{-0.23} R_oplus$, $P$ = 13.3 days) with a mass less than 24.4 $M_oplus$ at 99.7% confidence. K2-66b and K2-106b probe planetary physics in extreme radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا