Do you want to publish a course? Click here

Observation of Inertial-range Energy Cascade within a Reconnection Jet in Earths Magnetotail

221   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Earths magnetotail region provides a unique environment to study plasma turbulence. We investigate the turbulence developed in an exhaust produced by magnetic reconnection at the terrestrial magnetotail region. Magnetic and velocity spectra show broad-band fluctuations corresponding to the inertial range, with Kolmorogov $-5/3$ scaling, indicative of a well developed turbulent cascade. We examine the mixed, third-order structure functions, and obtain a linear scaling in the inertial range. This linear scaling of the third-order structure functions implies a scale-invariant cascade of energy through the inertial range. A Politano-Pouquet third-order analysis gives an estimate of the incompressive energy transfer rate of $sim 10^{7}~mathrm{J,kg^{-1},s^{-1}}$. This is four orders of magnitude higher than the values typically measured in 1 AU solar wind, suggesting that the turbulence cascade plays an important role as a pathway of energy dissipation during reconnection events in the tail region.



rate research

Read More

Magnetic reconnection (MR) is a key physical concept explaining the addition of magnetic flux to the magnetotail and closed flux lines back-motion to the dayside magnetosphere. This scenario elaborated by citet{dung63}, can explain many aspects of solar wind-magnetosphere interaction processes, including substorms. However, neither the Dungey model nor its numerous modifications were able to explain fully the onset conditions for MR in the tail. In this paper, we introduce new onset conditions for forced MR in the tail. We call our scenario the windsock memory conditioned ram pressure effect. Our non-flux-transfer associated forcing is introduced by a combination of large-scale windsock motions exhibiting memory effects and solar wind dynamic pressure actions on the nightside magnetopause during northward oriented IMF. Using global MHD GUMICS-4 simulation results, upstream data from WIND, magnetosheath data from Cluster-1 and distant-tail data from the two-probe ARTEMIS mission, we show that the simultaneous occurrence of vertical windsock motions of the magnetotail and enhanced solar wind dynamic pressure introduces strong nightside disturbances, including enhanced electric fields and persistent vertical cross-tail shear flows. These perturbations, associated with a stream interaction region in the solar wind, drive MR in the tail during episodes of northward oriented interplanetary magnetic field (IMF). We detect MR indirectly, observing plasmoids in the tail and ground based signatures of Earthward moving fast flows. We also consider the application to solar system planets and close-in exoplanets, where the proposed scenario can elucidate some new aspects of solar/stellar wind - magnetosphere interactions.
The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work done by electromagnetic fields on the particles, $mathbf{J}cdotmathbf{E}$, has a non-Gaussian distribution and is concentrated in regions of high electric current density. Hence, magnetic energy is converted to kinetic energy in an intermittent manner. Furthermore, we find the higher-order statistics of magnetic field fluctuations generated by reconnection are characterized by multifractal scaling on magnetofluid scales and non-Gaussian global scale invariance on kinetic scales. These observations suggest $mathbf{J}cdotmathbf{E}$ within the reconnection jet has an analogue in fluid-like turbulence theory in that it proceeds via coherent structures generated by an intermittent cascade. This supports the hypothesis that turbulent dissipation is highly nonuniform, and thus these results could have far reaching implications for space and astrophysical plasmas.
Reconnection outflows are highly energetic directed flows that interact with the ambient plasma or with flows from other reconnection regions. Under these conditions the flow becomes highly unstable and chaotic, as any flow jets interacting with a medium. We report here massively parallel simulations of the two cases of interaction between outflow jets and between a single outflow with an ambient plasma. We find in both case the development of a chaotic magnetic field, subject to secondary reconnection events that further complicate the topology of the field lines. The focus of the present analysis is on the energy balance. We compute each energy channel (electromagnetic, bulk, thermal, for each species) and find where the most energy is exchanged and in what form. The main finding is that the largest energy exchange is not at the reconnection site proper but in the regions where the outflowing jets are destabilized.
151 - Z. Voros , M.P. Leubner , A. Runov 2009
Magnetic reconnection (MR) in Earths magnetotail is usually followed by a systemwide redistribution of explosively released kinetic and thermal energy. Recently, multispacecraft observations from the THEMIS mission were used to study localized explosions associated with MR in the magnetotail so as to understand subsequent Earthward propagation of MR outbursts during substorms. Here we investigate plasma and magnetic field fluctuations/structures associated with MR exhaust and ion-ion kink mode instability during a well documented MR event. Generation, evolution and fading of kinklike oscillations are followed over a distance of 70 000 km from the reconnection site in the midmagnetotail to the more dipolar region near the Earth. We have found that the kink oscillations driven by different ion populations within the outflow region can be at least 25 000 km from the reconnection site.
257 - R. A. Treumann , W. Baumjohann , 2018
A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas respond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا