No Arabic abstract
We propose that the flux-rope $Omega$ loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the $Omega$-loops size from initially-horizontal magnetic field ingested through the cells bottom. This idea is based on (1) observed characteristics of BMRs of all spans ($sim$ 1000 km to $sim$ 200,000 km), (2) a well-known simulation of the production of a BMR by a supergranule-size convection cell from horizontal field placed at cell bottom, and (3) a well-known convection-zone simulation. From the observations and simulations, we (1) infer that the strength of the field ingested by the biggest convection cells (giant cells) to make the biggest BMR $Omega$ loops is $sim$ 10$^3$ G, (2) plausibly explain why the span and flux of the biggest observed BMRs are $sim$ 200,000 km and $sim$ 10$^{22}$ Mx, (3) suggest how giant cells might also make failed-BMR $Omega$ loops that populate the upper convection zone with horizontal field, from which smaller convection cells make BMR $Omega$ loops of their size, (4) suggest why sunspots observed in a sunspot cycles declining phase tend to violate the hemispheric helicity rule, and (5) support a previously-proposed amended Babcock scenario for the sunspot cycles dynamo process. Because the proposed convection-based heuristic model for making a sunspot-BMR $Omega$ loop avoids having $sim$ 10$^5$ G field in the initial flux rope at the bottom of the convection zone, it is an appealing alternative to the present magnetic-buoyancy-based standard scenario and warrants testing by high-enough-resolution giant-cell magnetoconvection simulations.
We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope (VAULT2.0) is a Ly$alpha$ ($lambda$ 1216 {AA}) spectroheliograph launched on September 30, 2014. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No Coronal Mass Ejection (CME) was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion which enables us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope-like (MFR) structure was destroyed during its interaction with the ambient magnetic field creating downflows of cool plasma and diffuse hot coronal structures reminiscent of cusps. We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.
Magnetic clouds (MCs) are transient structures containing large-scale magnetic flux ropes from solar eruptions. The twist of magnetic field lines around the rope axis reveals information about flux rope formation processes and geoeffectivity. During propagation, MC flux ropes may erode via reconnection with the ambient solar wind. Any erosion reduces the magnetic flux and helicity of the ropes, and changes their cross-sectional twist profiles. This study relates twist profiles in MC flux ropes observed at 1 AU to the amount of erosion undergone by the MCs in interplanetary space. The twist profiles of two well-identified MC flux ropes associated with the clear appearance of post eruption arcades in the solar corona are analysed. To infer the amount of erosion, the magnetic flux content of the ropes in the solar atmosphere is estimated, and compared to estimates at 1 AU. The first MC shows a monotonically decreasing twist from the axis to periphery, while the second displays high twist at the axis, rising twist near the edges, and lower twist in between. The first MC displays a larger reduction in magnetic flux between the Sun and 1 AU, suggesting more erosion, than that seen in the second MC. In the second cloud, rising twist at the rope edges may have been due to an envelope of overlying coronal field lines with relatively high twist, formed by reconnection beneath the erupting flux rope in the low corona. This high-twist envelope remained almost intact from the Sun to 1 AU due to the low erosion levels. In contrast, the high-twist envelope of the first cloud may have been entirely peeled away via erosion by the time it reaches 1 AU.
The onset of a solar eruption is formulated here as either a magnetic catastrophe or as an instability. Both start with the same equation of force balance governing the underlying equilibria. Using a toroidal flux rope in an external bipolar or quadrupolar field as a model for the current-carrying flux, we demonstrate the occurrence of a fold catastrophe by loss of equilibrium for several representative evolutionary sequences in the stable domain of parameter space. We verify that this catastrophe and the torus instability occur at the same point; they are thus equivalent descriptions for the onset condition of solar eruptions.
We report the ground-level detection of a Galactic Cosmic-Ray (GCR) flux enhancement lasting $sim$ 17 hr and associated with the passage of a magnetic flux rope (MFR) over the Earth. The MFR was associated with a slow Coronal Mass Ejection (CME) caused by the eruption of a filament on 2016 October 9. Due to the quiet conditions during the eruption and the lack of interactions during the interplanetary CME transport to the Earth, the associated MFR preserved its configuration and reached the Earth with a strong magnetic field, low density, and a very low turbulence level compared to the local background, thus generating the ideal conditions to redirect and guide GCRs (in the $sim$ 8 to 60 GV rigidity range) along the magnetic field of the MFR. An important negative $B_Z$ component inside the MFR caused large disturbances in the geomagnetic field and a relatively strong geomagnetic storm. However, these disturbances are not the main factors behind the GCR enhancement. Instead, we found that the major factor was the alignment between the MFR axis and the asymptotic direction of the observer.
Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures as the oscillation characteristics depend on their interplay with the solar corona. Prominence oscillations can be classified into longitudinal and transverse types. We perform three-dimensional ideal magnetohydrodynamic simulations of prominence oscillations along a magnetic flux rope, with the aim to compare the oscillation periods with those predicted by various simplified models and to examine the restoring force. We find that the longitudinal oscillation has a period of about 49 minutes, which is in accordance with the pendulum model where the field-ligned component of gravity serves as the restoring force. In contrast, the horizontal transverse oscillation has a period of about 10 minutes and the vertical transverse oscillation has a period of about 14 minutes, and both of them can be nicely fitted with a two-dimensional slab model. We also find that the magnetic tension force dominates most of the time in transverse oscillations, except for the first minute when magnetic pressure overwhelms.