Do you want to publish a course? Click here

Uncovering Erosion Effects on Magnetic Flux Rope Twist

252   0   0.0 ( 0 )
 Added by Sanchita Pal Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic clouds (MCs) are transient structures containing large-scale magnetic flux ropes from solar eruptions. The twist of magnetic field lines around the rope axis reveals information about flux rope formation processes and geoeffectivity. During propagation, MC flux ropes may erode via reconnection with the ambient solar wind. Any erosion reduces the magnetic flux and helicity of the ropes, and changes their cross-sectional twist profiles. This study relates twist profiles in MC flux ropes observed at 1 AU to the amount of erosion undergone by the MCs in interplanetary space. The twist profiles of two well-identified MC flux ropes associated with the clear appearance of post eruption arcades in the solar corona are analysed. To infer the amount of erosion, the magnetic flux content of the ropes in the solar atmosphere is estimated, and compared to estimates at 1 AU. The first MC shows a monotonically decreasing twist from the axis to periphery, while the second displays high twist at the axis, rising twist near the edges, and lower twist in between. The first MC displays a larger reduction in magnetic flux between the Sun and 1 AU, suggesting more erosion, than that seen in the second MC. In the second cloud, rising twist at the rope edges may have been due to an envelope of overlying coronal field lines with relatively high twist, formed by reconnection beneath the erupting flux rope in the low corona. This high-twist envelope remained almost intact from the Sun to 1 AU due to the low erosion levels. In contrast, the high-twist envelope of the first cloud may have been entirely peeled away via erosion by the time it reaches 1 AU.



rate research

Read More

We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope (VAULT2.0) is a Ly$alpha$ ($lambda$ 1216 {AA}) spectroheliograph launched on September 30, 2014. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No Coronal Mass Ejection (CME) was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion which enables us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope-like (MFR) structure was destroyed during its interaction with the ambient magnetic field creating downflows of cool plasma and diffuse hot coronal structures reminiscent of cusps. We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.
It has been observationally well established that the magnetic configurations most favorable for producing energetic flaring events reside in delta-spots, a class of sunspots defined as having opposite polarity umbrae sharing a common penumbra. They are frequently characterized by extreme compactness, strong rotation and anti-Hale orientation. Numerous studies have shown that nearly all of the largest solar flares originate in delta-spots, making the understanding of these structures a fundamental step in predicting space weather. Despite their important influence on the space environment, surprisingly little is understood about the origin and behavior of delta-spots. In this paper, we perform a systematic study of the behavior of emerging flux ropes to test a theoretical model for the formation of delta-spots: the kink instability of emerging flux ropes. We simulated the emergence of highly twisted, kink-unstable flux ropes from the convection zone into the corona, and compared their photospheric properties to those of emerged weakly twisted, kink-stable flux ropes. We show that the photospheric manifestations of the emergence of highly twisted flux ropes closely match the observed properties of delta-spots, and we discuss the resulting implications for observations. Our results strongly support and extend previous theoretical work that suggested that the kink instability of emerging flux ropes is a promising candidate to explain delta-spot formation, as it reproduces their key characteristics very well.
112 - Eric Priest , Dana Longcope 2016
The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D zipper reconnection propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL), then subsequent quasi-2D main phase reconnection in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn ($2pi$ radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.
We report the ground-level detection of a Galactic Cosmic-Ray (GCR) flux enhancement lasting $sim$ 17 hr and associated with the passage of a magnetic flux rope (MFR) over the Earth. The MFR was associated with a slow Coronal Mass Ejection (CME) caused by the eruption of a filament on 2016 October 9. Due to the quiet conditions during the eruption and the lack of interactions during the interplanetary CME transport to the Earth, the associated MFR preserved its configuration and reached the Earth with a strong magnetic field, low density, and a very low turbulence level compared to the local background, thus generating the ideal conditions to redirect and guide GCRs (in the $sim$ 8 to 60 GV rigidity range) along the magnetic field of the MFR. An important negative $B_Z$ component inside the MFR caused large disturbances in the geomagnetic field and a relatively strong geomagnetic storm. However, these disturbances are not the main factors behind the GCR enhancement. Instead, we found that the major factor was the alignment between the MFR axis and the asymptotic direction of the observer.
124 - H. Q. Feng , G. Q. Zhao , 2019
Small interplanetary magnetic flux ropes (SIMFRs) are often detected by space satellites in the interplanetary space near 1 AU. These ropes can be fitted by a cylindrically symmetric magnetic model. The durations of SIMFRsare usually <12 h, and the diameters of SIMFRsare <0.20 AU and show power law distribution. Most SIMFRs are observed in the typically slow solar wind (<500 km/s), and only several events are observed with high speed (>700 km/s). Some SIMFRs demonstrate abnormal heavy ion compositions, such as abnormally high He abundance, abnormally high average iron ionization, and enhanced O7+ abundance. These SIMFRs originate from remarkablyhot coronal origins. Approximately 74.5% SIMFRs exhibit counterstreamingsuprathermal electron signatures. Given their flux rope configuration, SIMFRs are potentially more effective for substorms. SIMFRs and magnetic clouds havemany similar observational properties but also show some different observations.These similar properties may indicate that SIMFRs are the interplanetary counterparts of small coronal mass ejections. Some direct bodies of evidence have confirmed that several SIMFRs areinterplanetary counterparts of CMEs. However, their different properties may imply that some SIMFRs haveinterplanetary origins. Therefore, one of the main aims of future research on SIMFRs is to determine whether SIMFRs originate from two different sources, that is, some events are formed in the solar coronal atmosphere, whereas others originate from the interplanetary space. Finally, in this study, we offer some prospects that shouldbe addressed in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا