Do you want to publish a course? Click here

Chance constrained sets approximation: A probabilistic scaling approach -- EXTENDED VERSION

110   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, a sample-based procedure for obtaining simple and computable approximations of chance-constrained sets is proposed. The procedure allows to control the complexity of the approximating set, by defining families of simple-approximating sets of given complexity. A probabilistic scaling procedure then allows to rescale these sets to obtain the desired probabilistic guarantees. The proposed approach is shown to be applicable in several problem in systems and control, such as the design of Stochastic Model Predictive Control schemes or the solution of probabilistic set membership estimation problems.



rate research

Read More

Continued great efforts have been dedicated towards high-quality trajectory generation based on optimization methods, however, most of them do not suitably and effectively consider the situation with moving obstacles; and more particularly, the future position of these moving obstacles in the presence of uncertainty within some possible prescribed prediction horizon. To cater to this rather major shortcoming, this work shows how a variational Bayesian Gaussian mixture model (vBGMM) framework can be employed to predict the future trajectory of moving obstacles; and then with this methodology, a trajectory generation framework is proposed which will efficiently and effectively address trajectory generation in the presence of moving obstacles, and also incorporating presence of uncertainty within a prediction horizon. In this work, the full predictive conditional probability density function (PDF) with mean and covariance is obtained, and thus a future trajectory with uncertainty is formulated as a collision region represented by a confidence ellipsoid. To avoid the collision region, chance constraints are imposed to restrict the collision probability, and subsequently a nonlinear MPC problem is constructed with these chance constraints. It is shown that the proposed approach is able to predict the future position of the moving obstacles effectively; and thus based on the environmental information of the probabilistic prediction, it is also shown that the timing of collision avoidance can be earlier than the method without prediction. The tracking error and distance to obstacles of the trajectory with prediction are smaller compared with the method without prediction.
In this paper, we address the probabilistic error quantification of a general class of prediction methods. We consider a given prediction model and show how to obtain, through a sample-based approach, a probabilistic upper bound on the absolute value of the prediction error. The proposed scheme is based on a probabilistic scaling methodology in which the number of required randomized samples is independent of the complexity of the prediction model. The methodology is extended to address the case in which the probabilistic uncertain quantification is required to be valid for every member of a finite family of predictors. We illustrate the results of the paper by means of a numerical example.
117 - Yue Song , David J. Hill , Tao Liu 2021
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
This paper deals with the computation of the largest robust control invariant sets (RCISs) of constrained nonlinear systems. The proposed approach is based on casting the search for the invariant set as a graph theoretical problem. Specifically, a general class of discrete-time time-invariant nonlinear systems is considered. First, the dynamics of a nonlinear system is approximated with a directed graph. Subsequently, the condition for robust control invariance is derived and an algorithm for computing the robust control invariant set is presented. The algorithm combines the iterative subdivision technique with the robust control invariance condition to produce outer approximations of the largest robust control invariant set at each iteration. Following this, we prove convergence of the algorithm to the largest RCIS as the iterations proceed to infinity. Based on the developed algorithms, an algorithm to compute inner approximations of the RCIS is also presented. A special case of input affine and disturbance affine systems is also considered. Finally, two numerical examples are presented to demonstrate the efficacy of the proposed method.
In this paper, we consider a stochastic Model Predictive Control able to account for effects of additive stochastic disturbance with unbounded support, and requiring no restrictive assumption on either independence nor Gaussianity. We revisit the rather classical approach based on penalty functions, with the aim of designing a control scheme that meets some given probabilistic specifications. The main difference with previous approaches is that we do not recur to the notion of probabilistic recursive feasibility, and hence we do not consider separately the unfeasible case. In particular, two probabilistic design problems are envisioned. The first randomization problem aims to design textit{offline} the constraint set tightening, following an approach inherited from tube-based MPC. For the second probabilistic scheme, a specific probabilistic validation approach is exploited for tuning the penalty parameter, to be selected textit{offline} among a finite-family of possible values. The simple algorithm here proposed allows designing a textit{single} controller, always guaranteeing feasibility of the online optimization problem. The proposed method is shown to be more computationally tractable than previous schemes. This is due to the fact that the sample complexity for both probabilistic design problems depends on the prediction horizon in a logarithmic way, unlike scenario-based approaches which exhibit linear dependence. The efficacy of the proposed approach is demonstrated with a numerical example.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا