No Arabic abstract
MN112 is the Galactic luminous blue variable (LBV) candidate with circumstellar nebula. P Cygni is the first discovered LBV, which was recorded during major eruptions in the 17th century. The stars have similar spectra with strong emission hydrogen lines, He I, N II, Si II, and Fe III lines. We present results of the spectroscopic analysis and modeling of MN112 spectra. We obtained main stellar parameters and chemical abundances of MN112 and compared them with those of P Cygni. Atmosphere models were calculated using non-LTE radiative transfer code CMFGEN. We have used spectra of MN112 obtained with the 3.5-m telescope at the Observatory of Calar Alto and 3.5-m ARC telescope at the Apache Point Observatory. P Cygni spectra were taken with the 6-m BTA telescope. We have found the best-fit of the observed spectrum with the model at temperature $T_{text{eff}}= 15,200$K, clumping-corrected mass-loss rate $dot{M}f^{-0.5}=5.74 times 10^{-5}, M_{odot}text{yr}^{-1}$, filling-factor $f=0.1$, luminosity $L=5.77 times 10^5, L_{odot}$ for MN112. The ratio of helium to hydrogen He/H is 0.27 (by the number of atoms) with nitrogen overabundance ($X_text{N}/ X_{odot} = 6.8$) and the underabundance of carbon ($X_text{C}/ X_{odot} < 0.1$).
We report the discovery of a new Galactic candidate Luminous Blue Variable (cLBV) via detection of an infrared circular nebula and follow-up spectroscopy of its central star. The nebula, MN112, is one of many dozens of circular nebulae detected at $24 mu$m in the {it Spitzer Space Telescope} archival data, whose morphology is similar to that of nebulae associated with known (c)LBVs and related evolved massive stars. Specifically, the core-halo morphology of MN112 bears a striking resemblance to the circumstellar nebula associated with the Galactic cLBV GAL 079.29+00.46, which suggests that both nebulae might have a similar origin and that the central star of MN112 is a LBV. The spectroscopy of the central star showed that its spectrum is almost identical to that of the bona fide LBV P Cygni, which also supports the LBV classification of the object. To further constrain the nature of MN112, we searched for signatures of possible high-amplitude ($ga 1$ mag) photometric variability of the central star using archival and newly obtained photometric data covering a 45 year period. We found that the B magnitude of the star was constant ($simeq$ 17.1$pm$0.3 mag) over this period, while in the I band the star brightened by $simeq 0.4$ mag during the last 17 years. Although the non-detection of large photometric variability leads us to use the prefix `candidate in the classification of MN112, we remind that the long-term photometric stability is not unusual for genuine LBVs and that the brightness of P Cygni remains relatively stable during the last three centuries.
Empirical stellar spectral libraries have applications in both extragalactic and stellar studies, and they have an advantage over theoretical libraries because they naturally include all relevant chemical species and physical processes. During recent years we see a stream of new high quality sets of spectra, but increasing the spectral resolution and widening the wavelength coverage means resorting to multi-order echelle spectrographs. Assembling the spectra from many pieces results in lower fidelity of their shapes. We aim to offer the community a library of high signal-to-noise spectra with reliable continuum shapes. Furthermore, the using an integral field unit (IFU) alleviates the issue of slit losses. Our library was build with the MUSE (Multi-Unit Spectroscopic Explorer) IFU instrument. We obtained spectra over nearly the entire visual band (lambda~4800-9300 Ang). We assembled a library of 35 high-quality MUSE spectra for a subset of the stars from the X-shooter Spectral Library. We verified the continuum shape of these spectra with synthetic broad band colors derived from the spectra. We also report some spectral indices from the Lick system, derived from the new observations. We offer a high-fidelity set of stellar spectra that covers the Hertzsprung-Russell diagram. It can be useful for both extragalactic and stellar work and demonstrates that the IFUs are excellent tools for building reliable spectral libraries.
We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single factor for transforming the intrinsic Lya emission properties into the observed ones. Spatial diffusion of Lya photons from radiative transfer results in extended Lya emission and only the central part with high surface brightness can be observed. Because of radiative transfer, the appearance of LAEs depends on density and velocity structures in circumgalactic and intergalactic media as well as the viewing angle, which leads to a broad distribution of apparent (observed) Lya luminosity for a given intrinsic Lya luminosity. Radiative transfer also causes frequency diffusion of Lya photons. The resultant Lya line is asymmetric with a red tail. The peak of the Lya line shifts towards longer wavelength and the shift is anti-correlated with the apparent to intrinsic Lya luminosity ratio. The simple radiative transfer model provides a new framework for studying LAEs. It is able to explain an array of observed properties of z~5.7 LAEs in Ouchi et al. (2008), producing Lya spectra, morphology, and apparent Lya luminosity function (LF) similar to those seen in observation. The broad distribution of apparent Lya luminosity at fixed UV luminosity provides a natural explanation for the observed UV LF, especially the turnover towards the low luminosity end. The model also reproduces the observed distribution of Lya equivalent width (EW) and explains the deficit of UV bright, high EW sources. Because of the broad distribution of the apparent to intrinsic Lya luminosity ratio, the model predicts effective duty cycles and Lya escape fractions for LAEs.
The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action. The extreme temperature and density contrasts and stratifications are emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones, respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass, momentum, energy, and magnetic fields in terms of the corresponding coarse-grained mean fields. Those transport properties are usually strongly modified by anisotropies and often completely new effects emerge in such a description that have no correspondence in terms of the original (non coarse-grained) fields.
Gaia Photometric Science Alerts (GPSA) publishes Gaia G magnitudes and Blue Photometer (BP) and Red Photometer (RP) low-resolution epoch spectra of transient events. 27 high-resolution spectra from Gaias Radial Velocity Spectrometer (RVS) of 12 GPSAs have also been published. These 27 RVS epoch spectra are presented next to their corresponding BP and RP epoch spectra in a single place for the first time. We also present one new RVS spectrum of a 13th GPSA that could not be published by the GPSA system. Of the 13 GPSA with RVS spectra, five are photometrically classified as unknown, five as supernovae (three as SN Ia, one as SN II, one as SN IIP), one as a cataclysmic variable, one as a binary microlensing event and one as a young stellar object. The five GPSAs classified as unknown are potential scientific opportunities, while all of them are a preview of the epoch RVS spectra that will be published in Gaias fourth data release.