No Arabic abstract
We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single factor for transforming the intrinsic Lya emission properties into the observed ones. Spatial diffusion of Lya photons from radiative transfer results in extended Lya emission and only the central part with high surface brightness can be observed. Because of radiative transfer, the appearance of LAEs depends on density and velocity structures in circumgalactic and intergalactic media as well as the viewing angle, which leads to a broad distribution of apparent (observed) Lya luminosity for a given intrinsic Lya luminosity. Radiative transfer also causes frequency diffusion of Lya photons. The resultant Lya line is asymmetric with a red tail. The peak of the Lya line shifts towards longer wavelength and the shift is anti-correlated with the apparent to intrinsic Lya luminosity ratio. The simple radiative transfer model provides a new framework for studying LAEs. It is able to explain an array of observed properties of z~5.7 LAEs in Ouchi et al. (2008), producing Lya spectra, morphology, and apparent Lya luminosity function (LF) similar to those seen in observation. The broad distribution of apparent Lya luminosity at fixed UV luminosity provides a natural explanation for the observed UV LF, especially the turnover towards the low luminosity end. The model also reproduces the observed distribution of Lya equivalent width (EW) and explains the deficit of UV bright, high EW sources. Because of the broad distribution of the apparent to intrinsic Lya luminosity ratio, the model predicts effective duty cycles and Lya escape fractions for LAEs.
We study the clustering properties of z~5.7 Lyman-alpha emitters (LAEs) in a cosmological reionization simulation with a full Lya radiative transfer calculation. Lya radiative transfer substantially modifies the intrinsic Lya emission properties, compared to observed ones, depending on the density and velocity structure environment around the Lya emitting galaxy. This environment-dependent Lya selection introduces new features in LAE clustering, suppressing (enhancing) the line-of-sight (transverse) density fluctuations and giving rise to scale-dependent galaxy bias. In real space, the contours of the three-dimensional two-point correlation function of LAEs appear to be prominently elongated along the line of sight on large scales, an effect that is opposite to and much stronger than the linear redshift-space distortion effect. The projected two-point correlation function is greatly enhanced in amplitude by a factor of up to a few, compared to the case without the environment dependent selection effect. The new features in LAE clustering can be understood with a simple, physically motivated model, where Lya selection depends on matter density, velocity, and their gradients. We discuss the implications and consequences of the effects on galaxy clustering from Lya selection in interpreting clustering measurements and in constraining cosmology and reionization from LAEs.
Lyman-{alpha} emitters (LAEs) are a promising target to probe the large scale structure of the Universe at high redshifts, $zgtrsim 2$. However, their detection is sensitive to radiative transfer effects that depend on local astrophysical conditions. Thus, modeling the bulk properties of this galaxy population remains challenging for theoretical models. Here we develop a physically-motivated scheme to predict LAEs in cosmological simulations. The escape of Ly{alpha} photons is computed using a Monte Carlo radiative transfer code which outputs a Ly{alpha} escape fraction. To speed-up the process of assigning escape fractions to individual galaxies, we employ fitting formulae that approximate the full Monte Carlo results within an accuracy of 10% for a broad range of column densities, gas metallicities and gas bulk velocities. We apply our methodology to the semi-analytical model GALFORM on a large N-body simulation. The Ly{alpha} photons escape through an outflowing neutral gas medium, implemented assuming different geometries. This results in different predictions for the typical column density and outflow velocities of the LAE population. To understand the impact of radiative transfer on our predictions, we contrast our models against a simple abundance matching assignment. Our full models populate LAEs in less massive haloes than what is obtained with abundance matching. Overall, radiative transfer effects result in better agreement when confronting the properties of LAEs against observational measurements. This suggest that incorporating the effects of Ly{alpha} radiative transfer in the analysis of this galaxy population, including their clustering, can be important for obtaining an unbiased interpretation of future datasets.
New results are presented, as part of the Hi-z Emission Line Survey (HiZELS), from the largest area survey to date (1.4 sq.deg) for Lyman-alpha emitters (LAEs) at z~9. The survey, which is primarily targeting H-alpha emitters at z<3, uses the Wide Field CAMera on the United Kingdom Infrared Telescope and a custom narrow-band filter in the J band and reaches a Lyman-alpha luminosity limit of ~10^43.8 erg/s over a co-moving volume of 1.12x10^6 Mpc^3 at z=8.96+-0.06. Only 2 candidates were found out of 1517 line emitters and those were rejected as LAEs after follow-up observations. The limit on the space density of bright LAEs is improved by 3 orders of magnitude, consistent with suppression of the bright end of the Lyman-alpha luminosity function beyond z~6. Combined with upper limits from smaller but deeper surveys, this rules out some of the most extreme models for high-redshift LAEs. The potential contamination of future narrow-band Lyman-alpha surveys at z>7 by Galactic brown dwarf stars is also examined, leading to the conclusion that such contamination may well be significant for searches at 7.7<z<8.0, 9.1<z<9.5 and 11.7 < z < 12.2.
We calculate Lyman Alpha Emitter (LAE) angular correlation functions (ACFs) at $z simeq 6.6$ and the fraction of lifetime (for the 100 Myrs preceding $zsimeq6.6$) galaxies spend as Lyman Break Galaxies (LBGs) or as LBGs with Lyman Alpha (Ly$alpha$) emission using a model that combines SPH cosmological simulations (GADGET-2), dust attenuation and a radiative transfer code (pCRASH). The ACFs are a powerful tool that significantly narrows the 3D parameter space allowed by LAE Ly$alpha$ and UV luminosity functions (LFs) alone. With this work, we simultaneously constrain the escape fraction of ionizing photons $f_{esc}=0.05-0.5$, the mean fraction of neutral hydrogen in the intergalactic medium (IGM) $langle chi_{HI} rangle leq 0.01$ and the dust-dependent ratio of the escape fractions of Ly$alpha$ and UV continuum photons $f_{alpha}/f_c=0.6-1.2$. Our results show that reionization has the largest impact on the amplitude of the ACFs, and its imprints are clearly distinguishable from those of $f_{esc}$ and $f_alpha/f_c$. We also show that galaxies with a critical stellar mass of $M_* = 10^{8.5} (10^{9.5})M_{odot}$ produce enough luminosity to stay visible as LBGs (LAEs). Finally, the fraction of time during the past 100 Myrs prior to z=6.6 a galaxy spends as a LBG or as a LBG with Ly$alpha$ emission increases with the UV magnitude (and the stellar mass $M_*$): considering observed (dust and IGM attenuated) luminosities, the fraction of time a galaxy spends as a LBG (LAE) increases from 65% to 100% (0-100%) as $M_{UV}$ decreases from $M_{UV} = -18.0$ to $-23.5$ ($M_*$ increases from $10^8-10^{10.5} M_{odot}$). Thus in our model the brightest (most massive) LBGs most often show Ly$alpha$ emission.
Lyman alpha (Lya) emission lines should be attenuated in a neutral intergalactic medium (IGM). Therefore the visibility of Lya emitters at high redshifts can serve as a valuable probe of reionization at about the 50% level. We present an imaging search for z=7.7 Lya emitting galaxies using an ultra-narrowband filter (filter width= 9A) on the NEWFIRM imager at the Kitt Peak National Observatory. We found four candidate Lya emitters in a survey volume of 1.4 x 10^4 Mpc^3, with a line flux brighter than 6x10^-18 erg/cm^2/s (5 sigma in 2 aperture). We also performed a detailed Monte-Carlo simulation incorporating the instrumental effects to estimate the expected number of Lya emitters in our survey, and found that we should expect to detect one Lya emitter, assuming a non-evolving Lya luminosity function (LF) between z=6.5 and z=7.7. Even if one of the present candidates is spectroscopically confirmed as a z~8 Lya emitter, it would indicate that there is no significant evolution of the Lya LF from z=3.1 to z~8. While firm conclusions would need both spectroscopic confirmations and larger surveys to boost the number counts of galaxies, we successfully demonstrate the feasibility of sensitive near-infrared (1.06 um) narrow-band searches using custom filters designed to avoid the OH emission lines that make up most of the sky background.