Do you want to publish a course? Click here

An elementary approach for minimax estimation of Bernoulli proportion in the restricted parameter space

75   0   0.0 ( 0 )
 Added by Heejune Sheen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present an elementary mathematical method to find the minimax estimator of the Bernoulli proportion $theta$ under the squared error loss when $theta$ belongs to the restricted parameter space of the form $Omega = [0, eta]$ for some pre-specified constant $0 leq eta leq 1$. This problem is inspired from the problem of estimating the rate of positive COVID-19 tests. The presented results and applications would be useful materials for both instructors and students when teaching point estimation in statistical or machine learning courses.



rate research

Read More

162 - Daniel J. McDonald 2017
This paper presents minimax rates for density estimation when the data dimension $d$ is allowed to grow with the number of observations $n$ rather than remaining fixed as in previous analyses. We prove a non-asymptotic lower bound which gives the worst-case rate over standard classes of smooth densities, and we show that kernel density estimators achieve this rate. We also give oracle choices for the bandwidth and derive the fastest rate $d$ can grow with $n$ to maintain estimation consistency.
In the multiple testing context, a challenging problem is the estimation of the proportion $pi_0$ of true-null hypotheses. A large number of estimators of this quantity rely on identifiability assumptions that either appear to be violated on real data, or may be at least relaxed. Under independence, we propose an estimator $hat{pi}_0$ based on density estimation using both histograms and cross-validation. Due to the strong connection between the false discovery rate (FDR) and $pi_0$, many multiple testing procedures (MTP) designed to control the FDR may be improved by introducing an estimator of $pi_0$. We provide an example of such an improvement (plug-in MTP) based on the procedure of Benjamini and Hochberg. Asymptotic optimality results may be derived for both $hat{pi}_0$ and the resulting plug-in procedure. The latter ensures the desired asymptotic control of the FDR, while it is more powerful than the BH-procedure. Finally, we compare our estimator of $pi_0$ with other widespread estimators in a wide range of simulations. We obtain better results than other tested methods in terms of mean square error (MSE) of the proposed estimator. Finally, both asymptotic optimality results and the interest in tightly estimating $pi_0$ are confirmed (empirically) by results obtained with the plug-in MTP.
184 - Xinyi Xu , Feng Liang 2010
We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics of minimax risk in the case of Gaussian errors. We derive the convergence rate and constant for minimax risk among Bayesian predictive densities under Gaussian priors and we show that this minimax risk is asymptotically equivalent to that among all density estimators.
We address the problem of adaptive minimax density estimation on $bR^d$ with $bL_p$--loss on the anisotropic Nikolskii classes. We fully characterize behavior of the minimax risk for different relationships between regularity parameters and norm indexes in definitions of the functional class and of the risk. In particular, we show that there are four different regimes with respect to the behavior of the minimax risk. We develop a single estimator which is (nearly) optimal in orderover the complete scale of the anisotropic Nikolskii classes. Our estimation procedure is based on a data-driven selection of an estimator from a fixed family of kernel estimators.
This paper studies the minimax rate of nonparametric conditional density estimation under a weighted absolute value loss function in a multivariate setting. We first demonstrate that conditional density estimation is impossible if one only requires that $p_{X|Z}$ is smooth in $x$ for all values of $z$. This motivates us to consider a sub-class of absolutely continuous distributions, restricting the conditional density $p_{X|Z}(x|z)$ to not only be Holder smooth in $x$, but also be total variation smooth in $z$. We propose a corresponding kernel-based estimator and prove that it achieves the minimax rate. We give some simple examples of densities satisfying our assumptions which imply that our results are not vacuous. Finally, we propose an estimator which achieves the minimax optimal rate adaptively, i.e., without the need to know the smoothness parameter values in advance. Crucially, both of our estimators (the adaptive and non-adaptive ones) impose no assumptions on the marginal density $p_Z$, and are not obtained as a ratio between two kernel smoothing estimators which may sound like a go to approach in this problem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا