Do you want to publish a course? Click here

Deforming the Loss Surface to Affect the Behaviour of the Optimizer

111   0   0.0 ( 0 )
 Added by Liangming Chen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In deep learning, it is usually assumed that the optimization process is conducted on a shape-fixed loss surface. Differently, we first propose a novel concept of deformation mapping in this paper to affect the behaviour of the optimizer. Vertical deformation mapping (VDM), as a type of deformation mapping, can make the optimizer enter a flat region, which often implies better generalization performance. Moreover, we design various VDMs, and further provide their contributions to the loss surface. After defining the local M region, theoretical analyses show that deforming the loss surface can enhance the gradient descent optimizers ability to filter out sharp minima. With visualizations of loss landscapes, we evaluate the flatnesses of minima obtained by both the original optimizer and optimizers enhanced by VDMs on CIFAR-100. The experimental results show that VDMs do find flatter regions. Moreover, we compare popular convolutional neural networks enhanced by VDMs with the corresponding original ones on ImageNet, CIFAR-10, and CIFAR-100. The results are surprising: there are significant improvements on all of the involved models equipped with VDMs. For example, the top-1 test accuracy of ResNet-20 on CIFAR-100 increases by 1.46%, with insignificant additional computational overhead.

rate research

Read More

In deep learning, it is usually assumed that the shape of the loss surface is fixed. Differently, a novel concept of deformation operator is first proposed in this paper to deform the loss surface, thereby improving the optimization. Deformation function, as a type of deformation operator, can improve the generalization performance. Moreover, various deformation functions are designed, and their contributions to the loss surface are further provided. Then, the original stochastic gradient descent optimizer is theoretically proved to be a flat minima filter that owns the talent to filter out the sharp minima. Furthermore, the flatter minima could be obtained by exploiting the proposed deformation functions, which is verified on CIFAR-100, with visualizations of loss landscapes near the critical points obtained by both the original optimizer and optimizer enhanced by deformation functions. The experimental results show that deformation functions do find flatter regions. Moreover, on ImageNet, CIFAR-10, and CIFAR-100, popular convolutional neural networks enhanced by deformation functions are compared with the corresponding original models, where significant improvements are observed on all of the involved models equipped with deformation functions. For example, the top-1 test accuracy of ResNet-20 on CIFAR-100 increases by 1.46%, with insignificant additional computational overhead.
138 - Li Zhong , Zhen Fang , Feng Liu 2020
Unsupervised domain adaptation (UDA) aims to train a target classifier with labeled samples from the source domain and unlabeled samples from the target domain. Classical UDA learning bounds show that target risk is upper bounded by three terms: source risk, distribution discrepancy, and combined risk. Based on the assumption that the combined risk is a small fixed value, methods based on this bound train a target classifier by only minimizing estimators of the source risk and the distribution discrepancy. However, the combined risk may increase when minimizing both estimators, which makes the target risk uncontrollable. Hence the target classifier cannot achieve ideal performance if we fail to control the combined risk. To control the combined risk, the key challenge takes root in the unavailability of the labeled samples in the target domain. To address this key challenge, we propose a method named E-MixNet. E-MixNet employs enhanced mixup, a generic vicinal distribution, on the labeled source samples and pseudo-labeled target samples to calculate a proxy of the combined risk. Experiments show that the proxy can effectively curb the increase of the combined risk when minimizing the source risk and distribution discrepancy. Furthermore, we show that if the proxy of the combined risk is added into loss functions of four representative UDA methods, their performance is also improved.
94 - Feng Wang , Huaping Liu 2020
Unsupervised contrastive learning has achieved outstanding success, while the mechanism of contrastive loss has been less studied. In this paper, we concentrate on the understanding of the behaviours of unsupervised contrastive loss. We will show that the contrastive loss is a hardness-aware loss function, and the temperature {tau} controls the strength of penalties on hard negative samples. The previous study has shown that uniformity is a key property of contrastive learning. We build relations between the uniformity and the temperature {tau} . We will show that uniformity helps the contrastive learning to learn separable features, however excessive pursuit to the uniformity makes the contrastive loss not tolerant to semantically similar samples, which may break the underlying semantic structure and be harmful to the formation of features useful for downstream tasks. This is caused by the inherent defect of the instance discrimination objective. Specifically, instance discrimination objective tries to push all different instances apart, ignoring the underlying relations between samples. Pushing semantically consistent samples apart has no positive effect for acquiring a prior informative to general downstream tasks. A well-designed contrastive loss should have some extents of tolerance to the closeness of semantically similar samples. Therefore, we find that the contrastive loss meets a uniformity-tolerance dilemma, and a good choice of temperature can compromise these two properties properly to both learn separable features and tolerant to semantically similar samples, improving the feature qualities and the downstream performances.
The advancement of artificial intelligence has cast a new light on the development of optimization algorithm. This paper proposes to learn a two-phase (including a minimization phase and an escaping phase) global optimization algorithm for smooth non-convex functions. For the minimization phase, a model-driven deep learning method is developed to learn the update rule of descent direction, which is formalized as a nonlinear combination of historical information, for convex functions. We prove that the resultant algorithm with the proposed adaptive direction guarantees convergence for convex functions. Empirical study shows that the learned algorithm significantly outperforms some well-known classical optimization algorithms, such as gradient descent, conjugate descent and BFGS, and performs well on ill-posed functions. The escaping phase from local optimum is modeled as a Markov decision process with a fixed escaping policy. We further propose to learn an optimal escaping policy by reinforcement learning. The effectiveness of the escaping policies is verified by optimizing synthesized functions and training a deep neural network for CIFAR image classification. The learned two-phase global optimization algorithm demonstrates a promising global search capability on some benchmark functions and machine learning tasks.
Catastrophic forgetting remains a severe hindrance to the broad application of artificial neural networks (ANNs), however, it continues to be a poorly understood phenomenon. Despite the extensive amount of work on catastrophic forgetting, we argue that it is still unclear how exactly the phenomenon should be quantified, and, moreover, to what degree all of the choices we make when designing learning systems affect the amount of catastrophic forgetting. We use various testbeds from the reinforcement learning and supervised learning literature to (1) provide evidence that the choice of which modern gradient-based optimization algorithm is used to train an ANN has a significant impact on the amount of catastrophic forgetting and show that-surprisingly-in many instances classical algorithms such as vanilla SGD experience less catastrophic forgetting than the more modern algorithms such as Adam. We empirically compare four different existing metrics for quantifying catastrophic forgetting and (2) show that the degree to which the learning systems experience catastrophic forgetting is sufficiently sensitive to the metric used that a change from one principled metric to another is enough to change the conclusions of a study dramatically. Our results suggest that a much more rigorous experimental methodology is required when looking at catastrophic forgetting. Based on our results, we recommend inter-task forgetting in supervised learning must be measured with both retention and relearning metrics concurrently, and intra-task forgetting in reinforcement learning must-at the very least-be measured with pairwise interference.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا