Do you want to publish a course? Click here

Code-switching pre-training for neural machine translation

423   0   0.0 ( 0 )
 Added by Zhen Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper proposes a new pre-training method, called Code-Switching Pre-training (CSP for short) for Neural Machine Translation (NMT). Unlike traditional pre-training method which randomly masks some fragments of the input sentence, the proposed CSP randomly replaces some words in the source sentence with their translation words in the target language. Specifically, we firstly perform lexicon induction with unsupervised word embedding mapping between the source and target languages, and then randomly replace some words in the input sentence with their translation words according to the extracted translation lexicons. CSP adopts the encoder-decoder framework: its encoder takes the code-mixed sentence as input, and its decoder predicts the replaced fragment of the input sentence. In this way, CSP is able to pre-train the NMT model by explicitly making the most of the cross-lingual alignment information extracted from the source and target monolingual corpus. Additionally, we relieve the pretrain-finetune discrepancy caused by the artificial symbols like [mask]. To verify the effectiveness of the proposed method, we conduct extensive experiments on unsupervised and supervised NMT. Experimental results show that CSP achieves significant improvements over baselines without pre-training or with other pre-training methods.



rate research

Read More

Previous studies have shown that initializing neural machine translation (NMT) models with the pre-trained language models (LM) can speed up the model training and boost the model performance. In this work, we identify a critical side-effect of pre-training for NMT, which is due to the discrepancy between the training objectives of LM-based pre-training and NMT. Since the LM objective learns to reconstruct a few source tokens and copy most of them, the pre-training initialization would affect the copying behaviors of NMT models. We provide a quantitative analysis of copying behaviors by introducing a metric called copying ratio, which empirically shows that pre-training based NMT models have a larger copying ratio than the standard one. In response to this problem, we propose a simple and effective method named copying penalty to control the copying behaviors in decoding. Extensive experiments on both in-domain and out-of-domain benchmarks show that the copying penalty method consistently improves translation performance by controlling copying behaviors for pre-training based NMT models. Source code is freely available at https://github.com/SunbowLiu/CopyingPenalty.
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple low-resource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pre-training corpus. Code, data, and pre-trained models are available at https://github.com/linzehui/mRASP.
Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme scenario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.
Neural machine translation (NMT) needs large parallel corpora for state-of-the-art translation quality. Low-resource NMT is typically addressed by transfer learning which leverages large monolingual or parallel corpora for pre-training. Monolingual pre-training approaches such as MASS (MAsked Sequence to Sequence) are extremely effective in boosting NMT quality for languages with small parallel corpora. However, they do not account for linguistic information obtained using syntactic analyzers which is known to be invaluable for several Natural Language Processing (NLP) tasks. To this end, we propose JASS, Japanese-specific Sequence to Sequence, as a novel pre-training alternative to MASS for NMT involving Japanese as the source or target language. JASS is joint BMASS (Bunsetsu MASS) and BRSS (Bunsetsu Reordering Sequence to Sequence) pre-training which focuses on Japanese linguistic units called bunsetsus. In our experiments on ASPEC Japanese--English and News Commentary Japanese--Russian translation we show that JASS can give results that are competitive with if not better than those given by MASS. Furthermore, we show for the first time that joint MASS and JASS pre-training gives results that significantly surpass the individual methods indicating their complementary nature. We will release our code, pre-trained models and bunsetsu annotated data as resources for researchers to use in their own NLP tasks.
The data scarcity in low-resource languages has become a bottleneck to building robust neural machine translation systems. Fine-tuning a multilingual pre-trained model (e.g., mBART (Liu et al., 2020)) on the translation task is a good approach for low-resource languages; however, its performance will be greatly limited when there are unseen languages in the translation pairs. In this paper, we present a continual pre-training (CPT) framework on mBART to effectively adapt it to unseen languages. We first construct noisy mixed-language text from the monolingual corpus of the target language in the translation pair to cover both the source and target languages, and then, we continue pre-training mBART to reconstruct the original monolingual text. Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline, as well as other strong baselines, across all tested low-resource translation pairs containing unseen languages. Furthermore, our approach also boosts the performance on translation pairs where both languages are seen in the original mBARTs pre-training. The code is available at https://github.com/zliucr/cpt-nmt.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا