Do you want to publish a course? Click here

Variational approach to relative entropies (with application to QFT)

193   0   0.0 ( 0 )
 Added by Stefan Hollands
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We define a new divergence of von Neumann algebras using a variational expression that is similar in nature to Kosakis formula for the relative entropy. Our divergence satisfies the usual desirable properties, upper bounds the sandwiched Renyi entropy and reduces to the fidelity in a limit. As an illustration, we use the formula in quantum field theory to compute our divergence between the vacuum in a bipartite system and an orbifolded -- in the sense of conditional expectation -- system in terms of the Jones index. We take the opportunity to point out entropic certainty relation for arbitrary von Neumann subalgebras of a factor related to the relative entropy. This certainty relation has an equivalent formulation in terms of error correcting codes.



rate research

Read More

373 - Shuzhou Wang , Zhenhua Wang 2020
We initiate the study of relative operator entropies and Tsallis relative operator entropies in the setting of JB-algebras. We establish their basic properties and extend the operator inequalities on relative operator entropies and Tsallis relative operator entropies to this setting. In addition, we improve the lower and upper bounds of the relative operator $(alpha, beta)$-entropy in the setting of JB-algebras that were established in Hilbert space operators setting by Nikoufar [18, 20]. Though we employ the same notation as in the classical setting of Hilbert space operators, the inequalities in the setting of JB-algebras have different connotations and their proofs requires techniques in JB-algebras.
We provide lower and upper bounds on the information transmission capacity of one single use of a classical-quantum channel. The lower bound is expressed in terms of the Hoeffding capacity, that we define similarly to the Holevo capacity, but replacing the relative entropy with the Hoeffding distance. Similarly, our upper bound is in terms of a quantity obtained by replacing the relative entropy with the recently introduced max-relative entropy in the definition of the divergence radius of a channel.
A prepotential approach to constructing the quantum systems with dynamical symmetry is proposed. As applications, we derive generalizations of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mass. They have the symmetries which are similar to the corresponding ones, and can be solved by using the algebraic method.
In this work, we investigate the possibility of compressing a quantum system to one of smaller dimension in a way that preserves the measurement statistics of a given set of observables. In this process, we allow for an arbitrary amount of classical side information. We find that the latter can be bounded, which implies that the minimal compression dimension is stable in the sense that it cannot be decreased by allowing for small errors. Various bounds on the minimal compression dimension are proven and an SDP-based algorithm for its computation is provided. The results are based on two independent approaches: an operator algebraic method using a fixed point result by Arveson and an algebro-geometric method that relies on irreducible polynomials and Bezouts theorem. The latter approach allows lifting the results from the single copy level to the case of multiple copies and from completely positive to merely positive maps.
We prove decomposition rules for quantum Renyi mutual information, generalising the relation $I(A:B) = H(A) - H(A|B)$ to inequalities between Renyi mutual information and Renyi entropy of different orders. The proof uses Beigis generalisation of Reisz-Thorin interpolation to operator norms, and a variation of the argument employed by Dupuis which was used to show chain rules for conditional Renyi entropies. The resulting decomposition rule is then applied to establish an information exclusion relation for Renyi mutual information, generalising the original relation by Hall.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا