Do you want to publish a course? Click here

A Mortality Model for Multi-populations: A Semi-Parametric Approach

169   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Mortality is different across countries, states and regions. Several empirical research works however reveal that mortality trends exhibit a common pattern and show similar structures across populations. The key element in analyzing mortality rate is a time-varying indicator curve. Our main interest lies in validating the existence of the common trends among these curves, the similar gender differences and their variability in location among the curves at the national level. Motivated by the empirical findings, we make the study of estimating and forecasting mortality rates based on a semi-parametric approach, which is applied to multiple curves with the shape-related nonlinear variation. This approach allows us to capture the common features contained in the curve functions and meanwhile provides the possibility to characterize the nonlinear variation via a few deviation parameters. These parameters carry an instructive summary of the time-varying curve functions and can be further used to make a suggestive forecast analysis for countries with barren data sets. In this research the model is illustrated with mortality rates of Japan and China, and extended to incorporate more countries.



rate research

Read More

Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in death counts is relatively high, and so the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when the model is applied to both simulated data which mimic US counties, and real data for French departments. The estimates produced by the model have direct applications to the study of subregional health patterns and disparities.
499 - E. G. Hill , E. H. Slate 2014
Periodontal probing depth is a measure of periodontitis severity. We develop a Bayesian hierarchical model linking true pocket depth to both observed and recorded values of periodontal probing depth, while permitting correlation among measures obtained from the same mouth and between duplicate examiners measures obtained at the same periodontal site. Periodontal site-specific examiner effects are modeled as arising from a Dirichlet process mixture, facilitating identification of classes of sites that are measured with similar bias. Using simulated data, we demonstrate the models ability to recover examiner site-specific bias and variance heterogeneity and to provide cluster-adjusted point and interval agreement estimates. We conclude with an analysis of data from a probing depth calibration training exercise.
A utility-based Bayesian population finding (BaPoFi) method was proposed by Morita and Muller (2017, Biometrics, 1355-1365) to analyze data from a randomized clinical trial with the aim of identifying good predictive baseline covariates for optimizing the target population for a future study. The approach casts the population finding process as a formal decision problem together with a flexible probability model using a random forest to define a regression mean function. BaPoFi is constructed to handle a single continuous or binary outcome variable. In this paper, we develop BaPoFi-TTE as an extension of the earlier approach for clinically important cases of time-to-event (TTE) data with censoring, and also accounting for a toxicity outcome. We model the association of TTE data with baseline covariates using a semi-parametric failure time model with a Polya tree prior for an unknown error term and a random forest for a flexible regression mean function. We define a utility function that addresses a trade-off between efficacy and toxicity as one of the important clinical considerations for population finding. We examine the operating characteristics of the proposed method in extensive simulation studies. For illustration, we apply the proposed method to data from a randomized oncology clinical trial. Concerns in a preliminary analysis of the same data based on a parametric model motivated the proposed more general approach.
The improvement of mortality projection is a pivotal topic in the diverse branches related to insurance, demography, and public policy. Motivated by the thread of Lee-Carter related models, we propose a Bayesian model to estimate and predict mortality rates for multi-population. This new model features in information borrowing among populations and properly reflecting variations of data. It also provides a solution to a long-time overlooked problem: model selection for dependence structures of population-specific time parameters. By introducing a Dirac spike function, simultaneous model selection and estimation for population-specific time effects can be achieved without much extra computation cost. We use the Japanese mortality data from Human Mortality Database to illustrate the desirable properties of our model.
In recent years, much of the focus in monitoring child mortality has been on assessing changes in the under-five mortality rate (U5MR). However, as the U5MR decreases, the share of neonatal deaths (within the first month) tends to increase, warranting increased efforts in monitoring this indicator in addition to the U5MR. A Bayesian splines regression model is presented for estimating neonatal mortality rates (NMR) for all countries. In the model, the relationship between NMR and U5MR is assessed and used to inform estimates, and spline regression models are used to capture country-specific trends. As such, the resulting NMR estimates incorporate trends in overall child mortality while also capturing data-driven trends. The model is fitted to 195 countries using the database from the United Nations Interagency Group for Child Mortality Estimation, producing estimates from 1990, or earlier if data are available, until 2015. The results suggest that, above a U5MR of 34 deaths per 1000 live births, at the global level, a 1 per cent increase in the U5MR leads to a 0.6 per cent decrease in the ratio of NMR to U5MR. Below a U5MR of 34 deaths per 1000 live births, the proportion of deaths under-five that are neonatal is constant at around 54 per cent. However, the relationship between U5MR and NMR varies across countries. The model has now been adopted by the United Nations Inter-agency Group for Child Mortality Estimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا