No Arabic abstract
AGN disks have been proposed as promising locations for the mergers of stellar mass black hole binaries (BBHs). Much recent work has been done on this merger channel, but the majority focuses on stellar mass black holes (BHs) orbiting in the prograde direction. Little work has been done to examine the impact of retrograde orbiters (ROs) on the formation and mergers of BBHs in AGN disks. Quantifying the retrograde contribution is important, since roughly half of all orbiters should initially be on retrograde orbits when the disk forms. We perform an analytic calculation of the evolution of ROs in an AGN disk. Because this evolution could cause the orbits of ROs to cross those of prograde BBHs, we derive the collision rate between a given RO and a given BBH orbiting in the prograde direction. In the examples given here, ROs in the inner region of the disk experience a rapid decrease in the semimajor axis of their orbits while also becoming highly eccentric in less than a million years. This rapid orbital evolution could lead to extreme mass ratio inspirals detectable by the Laser Interferometer Space Antenna. The collision rates of our example ROs with prograde BBHs in the migration trap depend strongly on the volume of the inner radiation-pressure-dominated region which depends on the mass of the supermassive black hole (SMBH). Rates are lowest for larger mass SMBHs, which dominate the AGN merger channel, suggesting that merger rates for this channel may not be significantly altered by ROs.
In this note we discuss the main results of a study of a massive binary with unequal mass ratio, q, embedded in an accretion disk, with its orbital rotation being opposed to that of the disk. When the mass ratio is sufficiently large, a gap opens in the disk, but the mechanism of gap formation is very different from the prograde case. Inward migration occurs on a timescale of t_ev ~ M_p/(dot M), where M_p is the mass of the less massive component (the perturber), and dot M is the accretion rate. When q<< 1, the accretion takes place mostly onto the more massive component, with the accretion rate onto the perturber being smaller than, or of order of, q^(1/3)M. However, this rate increases when supermassive binary black holes are considered and gravitational wave emission is important. We estimate a typical duration of time for which the accretion onto the perturber and gravitational waves could be detected.
Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary of a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate time scales for inward migration leading to coalescence and the accretion rate to the secondary component. We employ both semi-analytic methods and two dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. We develop the theory of type I migration for this case and determine conditions for gap formation finding that then inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed disk, with accretion onto the secondary playing only a minor role. The semi-analytic and fully numerical approaches are in good agreement, the former being applicable over long time scales. Inward migration induced by interaction with the disk alleviates the final parsec problem. Accretion onto the secondary does not significantly affect the orbital evolution, but may have observational consequences for high accretion efficiency. The binary may then appear as two sources of radiation rotating around each other. This study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Note too that torques acting between a circumbinary disk and a retrograde binary orbit may cause the mutual inclination to increase on a timescale that can be similar to, or smaller than that for orbital evolution, depending on detailed parameters. This is also an aspect for future study (abridged).
We re-examine archival Ginga data for the black hole binary system GS 1124-683, obtained when the system was undergoing its 1991 outburst. Our analysis estimates the dimensionless spin parameter a=cJ/GM^2 by fitting the X-ray continuum spectra obtained while the system was in the Thermal Dominant state. For likely values of mass and distance, we find the spin to be a=-0.25 (-0.64, +0.05) (90% confidence), implying that the disk is retrograde (i.e. rotating antiparallel to the spin axis of the black hole). We note that this measurement would be better constrained if the distance to the binary and the mass of the black hole were more accurately determined. This result is unaffected by the model used to fit the hard component of the spectrum. In order to be able to recover a prograde spin, the mass of the black hole would need to be at least 15.25 Msun, or the distance would need to be less than 4.5 kpc, both of which disagree with previous determinations of the black hole mass and distance. If we allow f_col to be free, we obtain no useful spin constraint. We discuss our results in the context of recent spin measurements and implications for jet production.
We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO+, HC3N, C2H, and c-C3H2 using a variety of plausible disk structures. These simple models have molecular regions with a layer of X-ray dominated regions, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C$_{rm n}$H$_{2}$) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlight molecular abundance observations and ratios that may distinguish among theoretical models of the density distribution in AGN disks. Finally, we assess the importance of the shock crossing time and the accretion time relative to the formation time for various chemical species. Vertical column densities are tabulated for a number of molecular species at both the characteristic shock crossing time and steady state. Although we do not attempt to fit any particular system or set of observations, we discuss our models and results in the context of the nearby AGN NGC 1068.
Blueshifted X-ray absorption lines (preferentially from Fe XXV and Fe XXVI present in the 6-8 keV range) indicating the presence of massive hot disk winds in Black Hole (BH) X-ray binaries (XrB) are most generally observed during the soft states. It has been recently suggested that the non-detection of such hot wind signatures in the hard states could be due to the thermal instability of the wind in the ionisation domain consistent with Fe XXV and Fe XXVI. Studying the wind thermal stability requires however a very good knowledge of the spectral shape of the ionizing Spectral Energy Distribution (SED). We discuss in this paper the expected evolution of the disk wind properties during an entire outburst by using the RXTE observations of GX 339-4 during its 2010-2011 outburst. While GX 339-4 never showed signatures of a hot wind in the X-rays, the dataset used is optimal to illustrate our purposes. We compute the corresponding stability curves of the wind using the SED obtained with the Jet-Emitting Disk model. We show that the disk wind can transit from stable to unstable states for Fe XXV and Fe XXVI ions on a day time scale. While the absence of wind absorption features in hard states could be explained by this instability, their presence in soft states seems to require changes of the wind properties (e.g. density) during the spectral transitions between hard and soft states. We propose that these changes could be partly due to the variation of heating power release at the accretion disk surface through irradiation by the central X-ray source. The evolution of the disk wind properties discussed in this paper could be confirmed through the daily monitoring of the spectral transition of a high-inclination BH XrB.