Do you want to publish a course? Click here

Time molecules with periodically driven interacting qubits

121   0   0.0 ( 0 )
 Added by Kirill Shulga
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide numerical evidence for a temporal quantum-mechanical interference phenomenon: time molecules (TM). A variety of such stroboscopic states are observed in the dynamics of two interacting qubits subject to a periodic sequence of $pi$-pulses with the period $T$. The TMs appear periodically in time and have a large duration, $delta t_mathrm{TM} gg T$. All TMs demonstrate an almost zero value of the total polarization and a strong enhancement of the entanglement entropy $S$ up to the maximum value $S=ln 2$ of a corresponding Bell state. The TMs are generated by the commensurability of the Floquet eigenvalues and the presence of maximally entangled Floquet eigenstates. The TMs remain stable with detuned system parameters and with an increased number of qubits. The TMs can be observed in microwave experiments with an array of superconducting qubits.



rate research

Read More

Physical systems in the time domain may exhibit analogous phenomena in real space, such as time crystals, time-domain Fresnel lenses, and modulational interference in a qubit. Here we report the experimental realization of time-domain grating using a superconducting qutrit in periodically modulated probe and control fields via two schemes: Simultaneous modulation and complementary modulation. Both experimental and numerical results exhibit modulated Autler-Townes (AT) and modulation-induced diffraction (MID) effects. Theoretical results also confirm that the peak positions of the interference fringes of AT and MID effects are determined by the usual two-level relative phases, while the observed diffraction fringes, appearing only in the complementary modulation, are however related to the three-level relative phase. Further analysis indicates that such a single-atom time-domain diffraction originates from the correlation effect between the two time-domain gratings. Moreover, we find that the widths of the diffraction fringes are independent of the control-field power. Our results shed light on the experimental exploration of quantum coherence for modulated multi-level systems and may find promising applications in fast all-microwave switches and quantum-gate operations in the strong-driving regime.
341 - T. Boulier , J. Maslek , M. Bukov 2018
We experimentally investigate the effects of parametric instabilities on the short-time heating process of periodically-driven bosons in 2D optical lattices with a continuous transverse (tube) degree of freedom. We analyze three types of periodic drives: (i) linear along the x-lattice direction only, (ii) linear along the lattice diagonal, and (iii) circular in the lattice plane. In all cases, we demonstrate that the BEC decay is dominated by the emergence of unstable Bogoliubov modes, rather than scattering in higher Floquet bands, in agreement with recent theoretical predictions. The observed BEC depletion rates are much higher when shaking both along x and y directions, as opposed to only x or only y. This is understood as originating from the interaction-induced non-separability along the two lattice directions. We also report an explosion of the heating rates at large drive amplitudes, and suggest a phenomenological description beyond Bogoliubov theory. In this strongly-coupled regime, circular drives heat faster than diagonal drives, which illustrates the non-trivial dependence of the heating on the choice of drive.
Transferring the state of an information carrier from a sender to a receiver is an essential primitive in both classical and quantum communication and information processing. In a quantum process known as teleportation the unknown state of a quantum bit can be relayed to a distant party using shared entanglement and classical information. Here we present experiments in a solid-state system based on superconducting quantum circuits demonstrating the teleportation of the state of a qubit at the macroscopic scale. In our experiments teleportation is realized deterministically with high efficiency and achieves a high rate of transferred qubit states. This constitutes a significant step towards the realization of repeaters for quantum communication at microwave frequencies and broadens the tool set for quantum information processing with superconducting circuits.
Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.
82 - M. Morgado , S. Whitlock 2020
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a competitive physical platform for quantum simulation and computing, where high-fidelity state preparation and readout, quantum logic gates and controlled quantum dynamics of more than 100 qubits have all been demonstrated. These systems are now approaching the point where reliable quantum computations with hundreds of qubits and realistically thousands of multiqubit gates with low error rates should be within reach for the first time. In this article we give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits, performing quantum operations and engineering quantum many-body Hamiltonians. We then review the state-of-the-art concerning high-fidelity quantum operations and logic gates as well as quantum simulations in many-body regimes. Finally, we discuss computing schemes that are particularly suited to the Rydberg platform and some of the remaining challenges on the road to general purpose quantum simulators and quantum computers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا