Do you want to publish a course? Click here

Time-domain grating with a periodically driven qutrit

53   0   0.0 ( 0 )
 Added by Han Yingying
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Physical systems in the time domain may exhibit analogous phenomena in real space, such as time crystals, time-domain Fresnel lenses, and modulational interference in a qubit. Here we report the experimental realization of time-domain grating using a superconducting qutrit in periodically modulated probe and control fields via two schemes: Simultaneous modulation and complementary modulation. Both experimental and numerical results exhibit modulated Autler-Townes (AT) and modulation-induced diffraction (MID) effects. Theoretical results also confirm that the peak positions of the interference fringes of AT and MID effects are determined by the usual two-level relative phases, while the observed diffraction fringes, appearing only in the complementary modulation, are however related to the three-level relative phase. Further analysis indicates that such a single-atom time-domain diffraction originates from the correlation effect between the two time-domain gratings. Moreover, we find that the widths of the diffraction fringes are independent of the control-field power. Our results shed light on the experimental exploration of quantum coherence for modulated multi-level systems and may find promising applications in fast all-microwave switches and quantum-gate operations in the strong-driving regime.



rate research

Read More

We provide numerical evidence for a temporal quantum-mechanical interference phenomenon: time molecules (TM). A variety of such stroboscopic states are observed in the dynamics of two interacting qubits subject to a periodic sequence of $pi$-pulses with the period $T$. The TMs appear periodically in time and have a large duration, $delta t_mathrm{TM} gg T$. All TMs demonstrate an almost zero value of the total polarization and a strong enhancement of the entanglement entropy $S$ up to the maximum value $S=ln 2$ of a corresponding Bell state. The TMs are generated by the commensurability of the Floquet eigenvalues and the presence of maximally entangled Floquet eigenstates. The TMs remain stable with detuned system parameters and with an increased number of qubits. The TMs can be observed in microwave experiments with an array of superconducting qubits.
88 - Peter A. Ivanov 2021
We propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn-Teller system composed of a single spin interacting with two bosonic modes. We show that in the first order of the frequency drive the time-independent effective Hamiltonian describes spin-dependent interaction between the two bosonic modes. In the limit of high-frequency drive and low bosonic frequency the quantum Jahn-Teller system exhibits critical behaviour which can be used for high-precision quantum estimation. A major advantage of our scheme is the robustness of the system against spin decoherence which allows to perform parameter estimations with measurement time not limited by spin dephasing.
Making use of coherence and entanglement as metrological quantum resources allows to improve the measurement precision from the shot-noise- or quantum limit to the Heisenberg limit. Quantum metrology then relies on the availability of quantum engineered systems that involve controllable quantum degrees of freedom which are sensitive to the measured quantity. Sensors operating in the qubit mode and exploiting their coherence in a phase-sensitive measurement have been shown to approach the Heisenberg scaling in precision. Here, we show that this result can be further improved by operating the quantum sensor in the qudit mode, i.e., by exploiting $d$ rather than 2 levels. Specifically, we describe the metrological algorithm for using a superconducting transmon device operating in a qutrit mode as a magnetometer. The algorithm is based on the base-3 semi-quantum Fourier transformation and enhances the quantum theoretical performance of the sensor by a factor 2. Even more, the practical gain of our qutrit-implementation is found in a reduction of the number of iteration steps of the quantum Fourier transformation by a factor $log 2/log 3 approx 0.63$ as compared to the qubit mode. We show, that a two-tone capacitively coupled rf-signal is sufficient for the implementation of the algorithm.
The non-trivial zeros of the Riemann zeta function are central objects in number theory. In particular, they enable one to reproduce the prime numbers. They have also attracted the attention of physicists working in Random Matrix Theory and Quantum Chaos for decades. Here we present an experimental observation of the lowest non-trivial Riemann zeros by using a trapped ion qubit in a Paul trap, periodically driven with microwave fields. The waveform of the driving is engineered such that the dynamics of the ion is frozen when the driving parameters coincide with a zero of the real component of the zeta function. Scanning over the driving amplitude thus enables the locations of the Riemann zeros to be measured experimentally to a high degree of accuracy, providing a physical embodiment of these fascinating mathematical objects in the quantum realm.
We report the analogue simulation of an ergodiclocalized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: a driven domain representing an ergodic system, while the second is localized under the effect of disorder. Due to the overlap between localized and delocalized states, for small disorder there is a proximity effect and localization is destroyed. To experimentally investigate this, we prepare a microwave excitation in the driven domain and explore how deep it can penetrate the disordered region by probing its dynamics. Furthermore, we performed an ensemble average over 50 realizations of disorder, which clearly shows the proximity effect. Our work opens a new avenue to build quantum simulators of driven-disordered systems with applications in condensed matter physics and material science
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا