Do you want to publish a course? Click here

Lense-Thirring precession and modified gravity constraints

93   0   0.0 ( 0 )
 Added by Arman Stepanian
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The orbital Lense-Thirring precession is considered in the context of constraints for weak-field General Relativity involving the cosmological constant $Lambda$. It is shown that according to the current accuracy of satellite measurements the obtained error limits for $Lambda$ is self-consistent with cosmological observations. The corrections of $Lambda$ term are derived for the strong field Lense-Thirring precession i.e. the frame dragging effect and for the nutation. As a result, in the context of recently proposed $Lambda$-gravity we obtain constraints for $Lambda$ in both relativistic and weak-field limits. Namely, for the latter we analyze several Keplerian systems at different scales. We find that the obtained constraints for the modified gravity corrections are several orders of magnitude tighter than those available for such effects as gravitational redshift, gravitational time delay and geodetic precession in Solar System.



rate research

Read More

The geodesics of bound spherical orbits i.e. of orbits performing Lense-Thirring precession, are obtained in the case of the $Lambda$-term within gravito-electromagnetic formalism. It is shown that the presence of the $Lambda$-term in the equations of gravity leads to both relativistic and non-relativistic corrections in the equations of motion. The contribution of the $Lambda$-term in the Lense-Thirring precession is interpreted as an additional relativistic correction and the gravito-gyromagnetic ratio is defined.
An elementary pedagogical derivation of the Lense-Thirring precession is given based on the use of Hamilton vector. The Hamilton vector is an extra constant of motion of the Kepler/Coulomb problem related simply to the more popular Runge-Lenz vector. When a velocity-dependent Lorentz-like gravitomagnetic force is present, the Hamilton vector, as well as the canonical orbital momentum are no longer conserved and begin to precess. It is easy to calculate their precession rates, which are related to the Lense-Thirring precession of the orbit.
58 - G. Marcel , J. Neilsen 2020
The timing properties of X-ray binaries are still not understood, particularly the presence of quasi-periodic oscillations (QPOs) in their X-ray power spectra. The solid-body regime of Lense-Thirring precession is one prominent model invoked to explain the most common type of QPOs, Type C. However, solid-body precession requires a specific structure that has not been examined in light of constrained properties of accretion flows. We assume in this paper, as solid-body precession requires, a disk separated into two flows at a transition radius $r_t$: a cold outer flow and a hot inner flow (playing the role of the corona). We explore the physical structure of both flows using model-independent estimates of accretion parameters. We show that, in order to reproduce the observed X-ray spectra during luminous hard states, the hot flow must accrete at sonic to supersonic speeds, unreachable with typical viscous torques. As a result of this extreme accretion speed (or high $alpha$ parameter), no region of the disk during these states lies in the `wave-like regime required for solid-body precession. Furthermore, we expect the flow to align with the black hole spin axis via the Bardeen-Petterson effect inside a radius $r_{rm break}>r_t$. As a consequence, the hot inner flow cannot exhibit solid body precession -- as currently pictured in the literature -- during luminous hard states. Since Type C QPOs are prevalent in these states, we conclude that this mechanism is unlikely to be responsible for producing Type C QPOs around stellar mass black holes.
In this article, the bulk viscosity is introduced in a modified gravity model. The gravitational action has a general $f(R,T)$ form, where $R$ and $ T $ are the curvature scalar and the trace of energy momentum tensor respectively. An effective equation of state (EoS) has been investigated in the cosmological evolution with bulk viscosity. In the present scenario, the Hubble parameter which has a scaling relation with the redshift can be obtained generically. The role of deceleration parameter $q$ and equation of state parameter $omega $ is discussed to explain the late-time accelerating expansion of the universe. The statefinder parameters and Om diagnostic analysis are discussed for our obtained model to distinguish from other dark energy models together with the analysis of energy conditions and velocity of sound for the model. We have also numerically investigated the model by detailed maximum likelihood analysis of $580$ Type Ia supernovae from Union $ 2.1$ compilation datasets and updated $57$ Hubble datasets ($31$ data points from differential age method and $26$ points from BAO and other methods). It is with efforts found that the present model is in good agreement with observations.
161 - Qasem Exirifard 2011
The MOND paradigm to the missing mass problem requires introducing a functional that is to be identified through observations and experiments. We consider AQUAL theory as a realization of the MOND. We show that the accurate value of the Earth GM measured by the Lunar Laser Ranging and that by various artificial Earth satellites, including the accurate tracking of the LAGEOS satellites, constrain this functional such that some of the chosen/proposed functional are refuted.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا