No Arabic abstract
We investigate the ground-state phase diagram of the spinful extended Haldane-Hubbard model on the honeycomb lattice using an exact-diagonalization, mean-field variational approach, and further complement it with the infinite density matrix renormalization group, applied to an infinite honeycomb cylinder. This model, governed by both on-site and nearest-neighbor interactions, can result in two types of insulators with finite local order parameters, either with spin or charge ordering. Moreover, a third one, a topologically nontrivial insulator with nonlocal order, is also manifest. We test expectations of previous analyses in spinle
We investigate the ground-state phase diagram of the spinless Haldane-Hubbard model in the presence of quenched disorder, contrasting results obtained from both exact diagonalization as well as density matrix renormalization group, applied to a honeycomb cylinder. The interplay of disorder, interactions and topology gives rise to a rich phase diagram, and in particular highlights the possibility of a disorder-driven trivial-to-topological transition in the presence of finite interactions. That is, the topological Anderson insulator, demonstrated in non-interacting settings, is shown to be stable to the presence of sufficiently small interactions before a charge density wave Mott insulator sets in. We further perform a finite-size analysis of the transition to the ordered state in the presence of disorder, finding a mixed character of first and second order transitions in finite lattices, tied to specific conditions of disorder realizations and boundary conditions used.
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robust photoinduced in-gap state appears in the optical conductivity, depending on the parameters of the pulse. Here, by tuning its conditions, we maximize the overlap of the time-evolving wavefunction with excited states displaying the elusive bond-ordered wave of this model. Finally, we make a clear connection between the emergence of this order and the formation of the aforementioned in-gap state, suggesting the potential observation of purely electronic (i.e., not associated with a Peierls instability) bond-ordered waves in experiments involving molecular crystals.
We study the flat-band ferromagnetic phase of the Haldane-Hubbard model on a honeycomb lattice within a bosonization scheme for flat-band Chern insulators, focusing on the calculation of the spin-wave excitation spectrum. We consider the Haldane-Hubbard model with the noninteracting lower bands in a nearly-flat band limit, previously determined for the spinless model, and at 1/4-filling of its corresponding noninteracting limit. Within the bosonization scheme, the Haldane-Hubbard model is mapped into an effective interacting boson model, whose quadratic term allows us to determine the spin-wave spectrum at the harmonic approximation. We show that the excitation spectrum has two branches with a Goldstone mode and Dirac points at center and at the K and K points of the first Brillouin zone, respectively. We also consider the effects on the spin-wave spectrum due to an energy offset in the on-site Hubbard repulsion energies and due to the presence of an staggered on-site energy term, both quantities associated with the two triangular sublattices. In both cases, we find that an energy gap opens at the K and K points. Moreover, we also find some evidences for an instability of the flat-band ferromagnetic phase in the presence of the staggered on-site energy term. We provide some additional results for the square lattice topological Hubbard model previous studied within the bosonization formalism and comment on the differences between the bosonization scheme implementation for the correlated Chern insulators on both square and honeycomb lattices.
We extend previous real-space Hartree-Fock studies of static stripe stability to determine the phase diagram of the Hubbard model with anisotropic nearest-neighbor hopping t, by varying the on-site Coulomb repulsion U and investigating locally stable structures for representative hole doping levels x=1/8 and x=1/6. We also report the changes in stability of these stripes in the extended Hubbard model due to next-neighbor hopping t and to a nearest-neighbor Coulomb interaction V.
We study the Haldane model with nearest-neighbor interactions. This model is physically motivated by the associated ultracold atoms implementation. We show that the topological phase of the interacting model can be characterized by a physically observable winding number. The robustness of this number extends well beyond the topological insulator phase towards attractive and repulsive interactions that are comparable to the kinetic energy scale of the model. We identify and characterize the relevant phases of the model.