Do you want to publish a course? Click here

Vertical and Diagonal Stripes in the Extended Hubbard Model

110   0   0.0 ( 0 )
 Added by Marcin Raczkowski
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend previous real-space Hartree-Fock studies of static stripe stability to determine the phase diagram of the Hubbard model with anisotropic nearest-neighbor hopping t, by varying the on-site Coulomb repulsion U and investigating locally stable structures for representative hole doping levels x=1/8 and x=1/6. We also report the changes in stability of these stripes in the extended Hubbard model due to next-neighbor hopping t and to a nearest-neighbor Coulomb interaction V.



rate research

Read More

Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes from antiferromagnetic domains and reinforces the stripe order. Therefore the half-filled stripes not only accommodate holes but also redistribute them so that the kinetic energy is gained, and these stripes take over in the regime of $t/tsimeq -0.3$ appropriate for YBa$_2$Cu$_3$O$_{6+delta}$.
The interplay between thermal and quantum fluctuations controls the competition between phases of matter in strongly correlated electron systems. We study finite-temperature properties of the strongly coupled two-dimensional doped Hubbard model using the minimally-entangled typical thermal states (METTS) method on width $4$ cylinders. We discover that a phase characterized by commensurate short-range antiferromagnetic correlations and no charge ordering occurs at temperatures above the half-filled stripe phase extending to zero temperature. The transition from the antiferromagnetic phase to the stripe phase takes place at temperature $T/t approx 0.05$ and is accompanied by a step-like feature of the specific heat. We find the single-particle gap to be smallest close to the nodal point at $mathbf{k}=(pi/2, pi/2)$ and detect a maximum in the magnetic susceptibility. These features bear a strong resemblance to the pseudogap phase of high-temperature cuprate superconductors. The simulations are verified using a variety of different unbiased numerical methods in the three limiting cases of zero temperature, small lattice sizes, and half-filling. Moreover, we compare to and confirm previous determinantal quantum Monte Carlo results on incommensurate spin-density waves at finite doping and temperature.
The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coexist in a wide regime of electron dopings for both weak and strong couplings. Here, we investigate this antagonism within a variational approach that is based upon Jastrow-Slater wave functions, including backflow correlations, which can be treated within a quantum Monte Carlo procedure. We focus on clusters having a ladder geometry with $M$ legs (with $M$ ranging from $2$ to $10$) and a relatively large number of rungs, thus allowing us a detailed analysis in terms of the stripe length. We find that stripe order with periodicity $lambda=8$ in the charge and $2lambda=16$ in the spin can be stabilized at doping $delta=1/8$. Here, there are no sizable superconducting correlations and the ground state has an insulating character. A similar situation, with $lambda=6$, appears at $delta=1/6$. Instead, for smaller values of dopings, stripes can be still stabilized, but they are weakly metallic at $delta=1/12$ and metallic with strong superconducting correlations at $delta=1/10$, as well as for intermediate (incommensurate) dopings. Remarkably, we observe that spin modulation plays a major role in stripe formation, since it is crucial to obtain a stable striped state upon optimization. The relevance of our calculations for previous density-matrix renormalization group results and for the two-dimensional case is also discussed.
The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite cluster methods typically indicate that stripe order dominates while embedded quantum cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate for the first time that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides a new opportunity to study the influence of fluctuating stripe correlations on the models pairing correlations within a unified numerical framework.
We discuss the phase diagram of the extended Hubbard model with both attractive and repulsive local and nonlocal interactions. The extended dynamical mean-field theory (EDMFT) and the dual boson method (DB) are compared. The latter contains additional nonlocal correlation effects that are not incorporated in EDMFT. We find that EDMFT and DB give almost identical results in the attractive $V$ regime, where phase separation occurs. This is quite a difference with the previously studied repulsive $V$ regime, where EDMFT and DB give very different phase boundaries for the checkerboard order phase, especially at small $U$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا