Do you want to publish a course? Click here

Analyzing Worldwide Social Distancing through Large-Scale Computer Vision

316   0   0.0 ( 0 )
 Added by Isha Ghodgaonkar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In order to contain the COVID-19 pandemic, countries around the world have introduced social distancing guidelines as public health interventions to reduce the spread of the disease. However, monitoring the efficacy of these guidelines at a large scale (nationwide or worldwide) is difficult. To make matters worse, traditional observational methods such as in-person reporting is dangerous because observers may risk infection. A better solution is to observe activities through network cameras; this approach is scalable and observers can stay in safe locations. This research team has created methods that can discover thousands of network cameras worldwide, retrieve data from the cameras, analyze the data, and report the sizes of crowds as different countries issued and lifted restrictions (also called lockdown). We discover 11,140 network cameras that provide real-time data and we present the results across 15 countries. We collect data from these cameras beginning April 2020 at approximately 0.5TB per week. After analyzing 10,424,459 images from still image cameras and frames extracted periodically from video, the data reveals that the residents in some countries exhibited more activity (judged by numbers of people and vehicles) after the restrictions were lifted. In other countries, the amounts of activities showed no obvious changes during the restrictions and after the restrictions were lifted. The data further reveals whether people stay social distancing, at least 6 feet apart. This study discerns whether social distancing is being followed in several types of locations and geographical locations worldwide and serve as an early indicator whether another wave of infections is likely to occur soon.



rate research

Read More

69 - Sreetama Das 2021
Social distancing has been suggested as one of the most effective measures to break the chain of viral transmission in the current COVID-19 pandemic. We herein describe a computer vision-based AI-assisted solution to aid compliance with social distancing norms. The solution consists of modules to detect and track people and to identify distance violations. It provides the flexibility to choose between a tool-based mode or an automated mode of camera calibration, making the latter suitable for large-scale deployments. In this paper, we discuss different metrics to assess the risk associated with social distancing violations and how we can differentiate between transient or persistent violations. Our proposed solution performs satisfactorily under different test scenarios, processes video feed at real-time speed as well as addresses data privacy regulations by blurring faces of detected people, making it ideal for deployments.
We are witnessing a proliferation of massive visual data. Unfortunately scaling existing computer vision algorithms to large datasets leaves researchers repeatedly solving the same algorithmic, logistical, and infrastructural problems. Our goal is to democratize computer vision; one should not have to be a computer vision, big data and distributed computing expert to have access to state-of-the-art distributed computer vision algorithms. We present CloudCV, a comprehensive system to provide access to state-of-the-art distributed computer vision algorithms as a cloud service through a Web Interface and APIs.
The digital Michelangelo project was a seminal computer vision project in the early 2000s that pushed the capabilities of acquisition systems and involved multiple people from diverse fields, many of whom are now leaders in industry and academia. Reviewing this project with modern eyes provides us with the opportunity to reflect on several issues, relevant now as then to the field of computer vision and research in general, that go beyond the technical aspects of the work. This article was written in the context of a reading group competition at the week-long International Computer Vision Summer School 2017 (ICVSS) on Sicily, Italy. To deepen the participants understanding of computer vision and to foster a sense of community, various reading groups were tasked to highlight important lessons which may be learned from provided literature, going beyond the contents of the paper. This report is the winning entry of this guided discourse (Fig. 1). The authors closely examined the origins, fruits and most importantly lessons about research in general which may be distilled from the digital Michelangelo project. Discussions leading to this report were held within the group as well as with Hao Li, the group mentor.
133 - Laurent Perrinet 2017
The representation of images in the brain is known to be sparse. That is, as neural activity is recorded in a visual area ---for instance the primary visual cortex of primates--- only a few neurons are active at a given time with respect to the whole population. It is believed that such a property reflects the efficient match of the representation with the statistics of natural scenes. Applying such a paradigm to computer vision therefore seems a promising approach towards more biomimetic algorithms. Herein, we will describe a biologically-inspired approach to this problem. First, we will describe an unsupervised learning paradigm which is particularly adapted to the efficient coding of image patches. Then, we will outline a complete multi-scale framework ---SparseLets--- implementing a biologically inspired sparse representation of natural images. Finally, we will propose novel methods for integrating prior information into these algorithms and provide some preliminary experimental results. We will conclude by giving some perspective on applying such algorithms to computer vision. More specifically, we will propose that bio-inspired approaches may be applied to computer vision using predictive coding schemes, sparse models being one simple and efficient instance of such schemes.
Perceiving humans in the context of Intelligent Transportation Systems (ITS) often relies on multiple cameras or expensive LiDAR sensors. In this work, we present a new cost-effective vision-based method that perceives humans locations in 3D and their body orientation from a single image. We address the challenges related to the ill-posed monocular 3D tasks by proposing a neural network architecture that predicts confidence intervals in contrast to point estimates. Our neural network estimates human 3D body locations and their orientation with a measure of uncertainty. Our proposed solution (i) is privacy-safe, (ii) works with any fixed or moving cameras, and (iii) does not rely on ground plane estimation. We demonstrate the performance of our method with respect to three applications: locating humans in 3D, detecting social interactions, and verifying the compliance of recent safety measures due to the COVID-19 outbreak. We show that it is possible to rethink the concept of social distancing as a form of social interaction in contrast to a simple location-based rule. We publicly share the source code towards an open science mission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا