Do you want to publish a course? Click here

CloudCV: Large Scale Distributed Computer Vision as a Cloud Service

116   0   0.0 ( 0 )
 Added by Harsh Agrawal
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

We are witnessing a proliferation of massive visual data. Unfortunately scaling existing computer vision algorithms to large datasets leaves researchers repeatedly solving the same algorithmic, logistical, and infrastructural problems. Our goal is to democratize computer vision; one should not have to be a computer vision, big data and distributed computing expert to have access to state-of-the-art distributed computer vision algorithms. We present CloudCV, a comprehensive system to provide access to state-of-the-art distributed computer vision algorithms as a cloud service through a Web Interface and APIs.



rate research

Read More

In order to contain the COVID-19 pandemic, countries around the world have introduced social distancing guidelines as public health interventions to reduce the spread of the disease. However, monitoring the efficacy of these guidelines at a large scale (nationwide or worldwide) is difficult. To make matters worse, traditional observational methods such as in-person reporting is dangerous because observers may risk infection. A better solution is to observe activities through network cameras; this approach is scalable and observers can stay in safe locations. This research team has created methods that can discover thousands of network cameras worldwide, retrieve data from the cameras, analyze the data, and report the sizes of crowds as different countries issued and lifted restrictions (also called lockdown). We discover 11,140 network cameras that provide real-time data and we present the results across 15 countries. We collect data from these cameras beginning April 2020 at approximately 0.5TB per week. After analyzing 10,424,459 images from still image cameras and frames extracted periodically from video, the data reveals that the residents in some countries exhibited more activity (judged by numbers of people and vehicles) after the restrictions were lifted. In other countries, the amounts of activities showed no obvious changes during the restrictions and after the restrictions were lifted. The data further reveals whether people stay social distancing, at least 6 feet apart. This study discerns whether social distancing is being followed in several types of locations and geographical locations worldwide and serve as an early indicator whether another wave of infections is likely to occur soon.
69 - Sreetama Das 2021
Social distancing has been suggested as one of the most effective measures to break the chain of viral transmission in the current COVID-19 pandemic. We herein describe a computer vision-based AI-assisted solution to aid compliance with social distancing norms. The solution consists of modules to detect and track people and to identify distance violations. It provides the flexibility to choose between a tool-based mode or an automated mode of camera calibration, making the latter suitable for large-scale deployments. In this paper, we discuss different metrics to assess the risk associated with social distancing violations and how we can differentiate between transient or persistent violations. Our proposed solution performs satisfactorily under different test scenarios, processes video feed at real-time speed as well as addresses data privacy regulations by blurring faces of detected people, making it ideal for deployments.
Fashion is the way we present ourselves to the world and has become one of the worlds largest industries. Fashion, mainly conveyed by vision, has thus attracted much attention from computer vision researchers in recent years. Given the rapid development, this paper provides a comprehensive survey of more than 200 major fashion-related works covering four main aspects for enabling intelligent fashion: (1) Fashion detection includes landmark detection, fashion parsing, and item retrieval, (2) Fashion analysis contains attribute recognition, style learning, and popularity prediction, (3) Fashion synthesis involves style transfer, pose transformation, and physical simulation, and (4) Fashion recommendation comprises fashion compatibility, outfit matching, and hairstyle suggestion. For each task, the benchmark datasets and the evaluation protocols are summarized. Furthermore, we highlight promising directions for future research.
Redundant storage maintains the performance of distributed systems under various forms of uncertainty. This paper considers the uncertainty in node access and download service. We consider two access models under two download service models. In one access model, a user can access each node with a fixed probability, and in the other, a user can access a random fixed-size subset of nodes. We consider two download service models. In the first (small file) model, the randomness associated with the file size is negligible. In the second (large file) model, randomness is associated with both the file size and the systems operations. We focus on the service rate of the system. For a fixed redundancy level, the systems service rate is determined by the allocation of coded chunks over the storage nodes. We consider quasi-uniform allocations, where coded content is uniformly spread among a subset of nodes. The question we address asks what the size of this subset (spreading) should be. We show that in the small file model, concentrating the coded content to a minimum-size subset is universally optimal. For the large file model, the optimal spreading depends on the system parameters. These conclusions hold for both access models.
The digital Michelangelo project was a seminal computer vision project in the early 2000s that pushed the capabilities of acquisition systems and involved multiple people from diverse fields, many of whom are now leaders in industry and academia. Reviewing this project with modern eyes provides us with the opportunity to reflect on several issues, relevant now as then to the field of computer vision and research in general, that go beyond the technical aspects of the work. This article was written in the context of a reading group competition at the week-long International Computer Vision Summer School 2017 (ICVSS) on Sicily, Italy. To deepen the participants understanding of computer vision and to foster a sense of community, various reading groups were tasked to highlight important lessons which may be learned from provided literature, going beyond the contents of the paper. This report is the winning entry of this guided discourse (Fig. 1). The authors closely examined the origins, fruits and most importantly lessons about research in general which may be distilled from the digital Michelangelo project. Discussions leading to this report were held within the group as well as with Hao Li, the group mentor.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا