Do you want to publish a course? Click here

Theoretical formulations on thermodynamics of quantum impurity systems

100   0   0.0 ( 0 )
 Added by Yao Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we put forward the theoretical foundation toward thermodynamics of quantum impurity systems measurable in experiments. The theoretical developments involve the identifications on two types of thermodynamic entanglement free--energy spectral functions for impurity systems that can be either fermionic or bosonic or combined. Consider further the thermodynamic limit in which the hybrid environments satisfy the Gaussian--Wicks theorem. We then relate the thermodynamic spectral functions to the local quantum impurity systems spectral densities that are often experimentally measurable. Another type of inputs is the bare--bath coupling spectral densities, which could be accurately determined with various methods. Similar relation is also established for the nonentanglement component that exists only in anharmonic bosonic impurity systems. For illustration, we consider the simplest noninteracting systems, with focus on the strikingly different characteristics between the bosonic and fermionic scenarios.



rate research

Read More

Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of quantum technologies, however, the effects of many body interactions and their interplay with temperature, different drives and dynamical regimes is still largely unknown. Here we present a systematic study of these interplays: we consider a variety of interaction (from non-interacting to strongly correlated) and dynamical (from sudden quench to quasi-adiabatic) regimes, and draw some general conclusions in relation to work extraction and entropy production. As treatment of many-body interacting systems is highly challenging, we introduce a simple approximation which includes, for the average quantum work, many-body interactions only via the initial state, while the dynamics is fully non-interacting. We demonstrate that this simple approximation is surprisingly good for estimating both the average quantum work and the related entropy variation, even when many-body correlations are significant.
Quantum impurity models play an important role in many areas of physics from condensed matter to AMO and quantum information. They are important models for many physical systems but also provide key insights to understanding much more complicated scenarios. In this paper we introduce a simplified method to describe the thermodynamic properties of integrable quantum impurity models. We show this method explicitly using the anisotropic Kondo and the interacting resonant level models. We derive a simplified expression for the free energy of both models in terms of a single physically transparent integral equation which is valid at all temperatures and values of the coupling constants.
We propose a fully operational framework to study the non-equilibrium thermodynamics of a quantum system $S$ that is coupled to a detector $D$ whose state is continuously monitored, allowing to single out individual quantum trajectories of $S$. We focus on detailed fluctuation theorems and characterize the entropy production of the system. We establish fundamental differences with respect to the thermodynamic of unmonitored, unitarily evolved systems. We consider the paradigmatic example of circuit-QED, where superconducting qubits can be coupled to a continuously monitored resonator and show numerical simulations using state of the art experimental parameters.
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the dominance of the polymer length we can distinguish two regimes: vibrational and rotational. The first occur for small polymer length and here the standard oscillator in Schrodinger quantization is recovered at leading order. The second one, for large polymer length, features dominant polymer effects. In the case of the polymer particles in the box, a bounded and oscillating spectrum that presents a band structure and a Brillouin zone is found. The thermodynamical quantities calculated with these spectra have corrections with respect to standard ones and they depend on the polymer length. For generic polymer length, thermodynamics of both systems present an anomalous peak in their heat capacity $C_V$.
Quantum thermodynamics is a research field that aims at fleshing out the ultimate limits of thermodynamic processes in the deep quantum regime. A complete picture of quantum thermodynamics allows for catalysts, i.e., systems facilitating state transformations while remaining essentially intact in their state, very much reminding of catalysts in chemical reactions. In this work, we present a comprehensive analysis of the power and limitation of such thermal catalysis. Specifically, we provide a family of optimal catalysts that can be returned with minimal trace distance error after facilitating a state transformation process. To incorporate the genuine physical role of a catalyst, we identify very significant restrictions on arbitrary state transformations under dimension or mean energy bounds, using methods of convex relaxations. We discuss the implication of these findings on possible thermodynamic state transformations in the quantum regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا