Do you want to publish a course? Click here

Edge and Identity Preserving Network for Face Super-Resolution

78   0   0.0 ( 0 )
 Added by Jonghyun Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Face super-resolution (SR) has become an indispensable function in security solutions such as video surveillance and identification system, but the distortion in facial components is a great challenge in it. Most state-of-the-art methods have utilized facial priors with deep neural networks. These methods require extra labels, longer training time, and larger computation memory. In this paper, we propose a novel Edge and Identity Preserving Network for Face SR Network, named as EIPNet, to minimize the distortion by utilizing a lightweight edge block and identity information. We present an edge block to extract perceptual edge information, and concatenate it to the original feature maps in multiple scales. This structure progressively provides edge information in reconstruction to aggregate local and global structural information. Moreover, we define an identity loss function to preserve identification of SR images. The identity loss function compares feature distributions between SR images and their ground truth to recover identities in SR images. In addition, we provide a luminance-chrominance error (LCE) to separately infer brightness and color information in SR images. The LCE method not only reduces the dependency of color information by dividing brightness and color components but also enables our network to reflect differences between SR images and their ground truth in two color spaces of RGB and YUV. The proposed method facilitates the proposed SR network to elaborately restore facial components and generate high quality 8x scaled SR images with a lightweight network structure. Furthermore, our network is able to reconstruct an 128x128 SR image with 215 fps on a GTX 1080Ti GPU. Extensive experiments demonstrate that our network qualitatively and quantitatively outperforms state-of-the-art methods on two challenging datasets: CelebA and VGGFace2.



rate research

Read More

117 - Guangwei Gao , Lei Tang , Yi Yu 2021
With the growing importance of preventing the COVID-19 virus, face images obtained in most video surveillance scenarios are low resolution with mask simultaneously. However, most of the previous face super-resolution solutions can not handle both tasks in one model. In this work, we treat the mask occlusion as image noise and construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task. Given a low-quality face image with the mask as input, the role of the generator composed of a denoising module and super-resolution module is to acquire a high-quality high-resolution face image. The discriminator utilizes some carefully designed loss functions to ensure the quality of the recovered face images. Moreover, we incorporate the identity information and attention mechanism into our network for feasible correlated feature expression and informative feature learning. By jointly performing denoising and face super-resolution, the two tasks can complement each other and attain promising performance. Extensive qualitative and quantitative results show the superiority of our proposed JDSR-GAN over some comparable methods which perform the previous two tasks separately.
Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target individual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.
High-resolution (HR) hyperspectral face image plays an important role in face related computer vision tasks under uncontrolled conditions, such as low-light environment and spoofing attacks. However, the dense spectral bands of hyperspectral face images come at the cost of limited amount of photons reached a narrow spectral window on average, which greatly reduces the spatial resolution of hyperspectral face images. In this paper, we investigate how to adapt the deep learning techniques to hyperspectral face image super-resolution (HFSR), especially when the training samples are very limited. Benefiting from the amount of spectral bands, in which each band can be seen as an image, we present a spectral splitting and aggregation network (SSANet) for HFSR with limited training samples. In the shallow layers, we split the hyperspectral image into different spectral groups and take each of them as an individual training sample (in the sense that each group will be fed into the same network). Then, we gradually aggregate the neighbor bands at the deeper layers to exploit the spectral correlations. By this spectral splitting and aggregation strategy (SSAS), we can divide the original hyperspectral image into multiple samples to support the efficient training of the network and effectively exploit the spectral correlations among spectrum. To cope with the challenge of small training sample size (S3) problem, we propose to expand the training samples by a self-representation model and symmetry-induced augmentation. Experiments show that the introduced SSANet can well model the joint correlations of spatial and spectral information. By expanding the training samples, our proposed method can effectively alleviate the S3 problem. The comparison results demonstrate that our proposed method can outperform the state-of-the-arts.
91 - Jun Gu , Guangluan Xu , Yue Zhang 2018
Recently, deep convolutional neural networks (CNNs) have obtained promising results in image processing tasks including super-resolution (SR). However, most CNN-based SR methods treat low-resolution (LR) inputs and features equally across channels, rarely notice the loss of information flow caused by the activation function and fail to leverage the representation ability of CNNs. In this letter, we propose a novel single-image super-resolution (SISR) algorithm named Wider Channel Attention Network (WCAN) for remote sensing images. Firstly, the channel attention mechanism is used to adaptively recalibrate the importance of each channel at the middle of the wider attention block (WAB). Secondly, we propose the Local Memory Connection (LMC) to enhance the information flow. Finally, the features within each WAB are fused to take advantage of the networks representation capability and further improve information and gradient flow. Analytic experiments on a public remote sensing data set (UC Merced) show that our WCAN achieves better accuracy and visual improvements against most state-of-the-art methods.
Recently, single-image super-resolution has made great progress owing to the development of deep convolutional neural networks (CNNs). The vast majority of CNN-based models use a pre-defined upsampling operator, such as bicubic interpolation, to upscale input low-resolution images to the desired size and learn non-linear mapping between the interpolated image and ground truth high-resolution (HR) image. However, interpolation processing can lead to visual artifacts as details are over-smoothed, particularly when the super-resolution factor is high. In this paper, we propose a Deep Recurrent Fusion Network (DRFN), which utilizes transposed convolution instead of bicubic interpolation for upsampling and integrates different-level features extracted from recurrent residual blocks to reconstruct the final HR images. We adopt a deep recurrence learning strategy and thus have a larger receptive field, which is conducive to reconstructing an image more accurately. Furthermore, we show that the multi-level fusion structure is suitable for dealing with image super-resolution problems. Extensive benchmark evaluations demonstrate that the proposed DRFN performs better than most current deep learning methods in terms of accuracy and visual effects, especially for large-scale images, while using fewer parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا