Preliminary epidemiologic, phylogenetic and clinical findings suggest that several novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have increased transmissibility and decreased efficacy of several existing vaccines. Four mutations in the receptor-binding domain (RBD) of the spike protein that are reported to contribute to increased transmission. Understanding physical mechanism responsible for the affinity enhancement between the SARS-CoV-2 variants and ACE2 is the urgent challenge for developing blockers, vaccines and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. Based on a hydrophobic-interaction-based protein docking mechanism, this study reveals that the mutation N501Y obviously increased the hydrophobic attraction and decrease hydrophilic repulsion between the RBD and ACE2 that most likely caused the transmissibility increment of the variants. By analyzing the mutation-induced hydrophobic surface changes in the attraction and repulsion at the binding site of the complexes of the SARS-CoV-2 variants and antibodies, we found out that all the mutations of N501Y, E484K, K417N and L452R can selectively decrease or increase their binding affinity with some antibodies.
Heparin has been found to have antiviral activity against SARS-CoV-2. Here, by means of sliding window docking, molecular dynamics simulations and biochemical assays, we investigate the binding mode of heparin to the virus spike glycoprotein and the molecular basis for its antiviral activity. The simulations show that heparin binds at long, mostly positively charged patches on the spike, thereby masking the basic residues of the receptor binding domain and of the S1/S2 site. Experiments corroborated the simulation results by showing that heparin inhibits the cleavage of spike by furin by binding to the basic S1/S2 site. Our results indicate that heparin exerts its antiviral activity by both direct and allosteric mechanisms. Furthermore, the simulations provide insights into how heparan sulfate proteoglycans on the host cell can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.
The SARS-CoV-2 spike (S) protein facilitates viral infection, and has been the focus of many structure determination efforts. This paper studies the conformations of loops in the S protein based on the available Protein Data Bank (PDB) structures. Loops, as flexible regions of the protein, are known to be involved in binding and can adopt multiple conformations. We identify the loop regions of the S protein, and examine their structural variability across the PDB. While most loops had essentially one stable conformation, 17 of 44 loop regions were observed to be structurally variable with multiple substantively distinct conformations. Loop modeling methods were then applied to the S protein loop targets, and loops with multiple conformations were found to be more challenging for the methods to predict accurately. Sequence variants and the up/down structural states of the receptor binding domain were also considered in the analysis.
The recent global surge in COVID-19 infections has been fueled by new SARS-CoV-2 variants, namely Alpha, Beta, Gamma, Delta, etc. The molecular mechanism underlying such surge is elusive due to 4,653 non-degenerate mutations on the spike protein, which is the target of most COVID-19 vaccines. The understanding of the molecular mechanism of transmission and evolution is a prerequisite to foresee the trend of emerging vaccine-breakthrough variants and the design of mutation-proof vaccines and monoclonal antibodies. We integrate the genotyping of 1,489,884 SARS-CoV-2 genomes isolates, 130 human antibodies, tens of thousands of mutational data points, topological data analysis, and deep learning to reveal SARS-CoV-2 evolution mechanism and forecast emerging vaccine-escape variants. We show that infectivity-strengthening and antibody-disruptive co-mutations on the S protein RBD can quantitatively explain the infectivity and virulence of all prevailing variants. We demonstrate that Lambda is as infectious as Delta but is more vaccine-resistant. We analyze emerging vaccine-breakthrough co-mutations in 20 countries, including the United Kingdom, the United States, Denmark, Brazil, and Germany, etc. We envision that natural selection through infectivity will continue to be the main mechanism for viral evolution among unvaccinated populations, while antibody disruptive co-mutations will fuel the future growth of vaccine-breakthrough variants among fully vaccinated populations. Finally, we have identified the co-mutations that have the great likelihood of becoming dominant: [A411S, L452R, T478K], [L452R, T478K, N501Y], [V401L, L452R, T478K], [K417N, L452R, T478K], [L452R, T478K, E484K, N501Y], and [P384L, K417N, E484K, N501Y]. We predict they, particularly the last four, will break through existing vaccines. We foresee an urgent need to develop new vaccines that target these co-mutations.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major worldwide public health emergency that has infected over $1.5$ million people. The partially open state of S1 subunit in spike glycoprotein is considered vital for its infection with host cell and is represented as a key target for neutralizing antibodies. However, the mechanism elucidating the transition from the closed state to the partially open state still remains unclear. Here, we applied a combination of Markov state model, transition path theory and random forest to analyze the S1 motion. Our results explored a promising complete conformational movement of receptor-binding domain, from buried, partially open, to detached states. We also numerically confirmed the transition probability between those states. Based on the asymmetry in both the dynamics behavior and backbone C$alpha$ importance, we further suggested a relation between chains in the trimer spike protein, which may help in the vaccine design and antibody neutralization.