No Arabic abstract
Preliminary epidemiologic, phylogenetic and clinical findings suggest that several novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have increased transmissibility and decreased efficacy of several existing vaccines. Four mutations in the receptor-binding domain (RBD) of the spike protein that are reported to contribute to increased transmission. Understanding physical mechanism responsible for the affinity enhancement between the SARS-CoV-2 variants and ACE2 is the urgent challenge for developing blockers, vaccines and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. Based on a hydrophobic-interaction-based protein docking mechanism, this study reveals that the mutation N501Y obviously increased the hydrophobic attraction and decrease hydrophilic repulsion between the RBD and ACE2 that most likely caused the transmissibility increment of the variants. By analyzing the mutation-induced hydrophobic surface changes in the attraction and repulsion at the binding site of the complexes of the SARS-CoV-2 variants and antibodies, we found out that all the mutations of N501Y, E484K, K417N and L452R can selectively decrease or increase their binding affinity with some antibodies.
A recent experimental study found that the binding affinity between the cellular receptor human angiotensin converting enzyme 2 (ACE2) and receptor-binding domain (RBD) in spike (S) protein of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more than 10-fold higher than that of the original severe acute respiratory syndrome coronavirus (SARS-CoV). However, main-chain structures of the SARS-CoV-2 RBD are almost the same with that of the SARS-CoV RBD. Understanding physical mechanism responsible for the outstanding affinity between the SARS-CoV-2 S and ACE2 is the urgent challenge for developing blockers, vaccines and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. Considering the mechanisms of hydrophobic interaction, hydration shell, surface tension, and the shielding effect of water molecules, this study reveals a hydrophobic-interaction-based mechanism by means of which SARS-CoV-2 S and ACE2 bind together in an aqueous environment. The hydrophobic interaction between the SARS-CoV-2 S and ACE2 protein is found to be significantly greater than that between SARS-CoV S and ACE2. At the docking site, the hydrophobic portions of the hydrophilic side chains of SARS-CoV-2 S are found to be involved in the hydrophobic interaction between SARS-CoV-2 S and ACE2. We propose a method to design live attenuated viruses by mutating several key amino acid residues of the spike protein to decrease the hydrophobic surface areas at the docking site. Mutation of a small amount of residues can greatly reduce the hydrophobic binding of the coronavirus to the receptor, which may be significant reduce infectivity and transmissibility of the virus.
The recent global surge in COVID-19 infections has been fueled by new SARS-CoV-2 variants, namely Alpha, Beta, Gamma, Delta, etc. The molecular mechanism underlying such surge is elusive due to 4,653 non-degenerate mutations on the spike protein, which is the target of most COVID-19 vaccines. The understanding of the molecular mechanism of transmission and evolution is a prerequisite to foresee the trend of emerging vaccine-breakthrough variants and the design of mutation-proof vaccines and monoclonal antibodies. We integrate the genotyping of 1,489,884 SARS-CoV-2 genomes isolates, 130 human antibodies, tens of thousands of mutational data points, topological data analysis, and deep learning to reveal SARS-CoV-2 evolution mechanism and forecast emerging vaccine-escape variants. We show that infectivity-strengthening and antibody-disruptive co-mutations on the S protein RBD can quantitatively explain the infectivity and virulence of all prevailing variants. We demonstrate that Lambda is as infectious as Delta but is more vaccine-resistant. We analyze emerging vaccine-breakthrough co-mutations in 20 countries, including the United Kingdom, the United States, Denmark, Brazil, and Germany, etc. We envision that natural selection through infectivity will continue to be the main mechanism for viral evolution among unvaccinated populations, while antibody disruptive co-mutations will fuel the future growth of vaccine-breakthrough variants among fully vaccinated populations. Finally, we have identified the co-mutations that have the great likelihood of becoming dominant: [A411S, L452R, T478K], [L452R, T478K, N501Y], [V401L, L452R, T478K], [K417N, L452R, T478K], [L452R, T478K, E484K, N501Y], and [P384L, K417N, E484K, N501Y]. We predict they, particularly the last four, will break through existing vaccines. We foresee an urgent need to develop new vaccines that target these co-mutations.
The present Health Crisis tests the response of modern science and medicine to finding treatment for a new COVID-19 disease. The presentation on the world stage of antivirals such as remdesivir, obeys to the continuous investigation of biologically active molecules with multiple theoretical, computational and experimental tools. Diseases such as COVID:19 remind us that research into active ingredients for therapeutic purposes should cover all available sources, such as plants. In the present work, in silico tools, specifically docking study, were used to evaluate the binding and inhibition capacity of an antiviral such as remdesivir on the NSP-12 protein of SARS-CoV, a polymerase that is key in the replication of the SARS-COV virus. The results are then compared with a docking analysis of two natural products (Alpha-Bisabolol and betalain) with SARS-CoV protein, in order to find more candidates for COVID-19 virus replication inhibitors. in addition to increasing studies that help explain the specific mechanisms of the SARs-CoV-2 virus, remembering that we will have to live with the virus for an indefinite time from now on. Finally, natural products such as betalains may have inhibitory effects of a small order but in conjunction with other synergistic active ingredients they may increase their inhibition effect on NSP-12 protein of SARS-CoV.
We propose a benchmark to study surrogate model accuracy for protein-ligand docking. We share a dataset consisting of 200 million 3D complex structures and 2D structure scores across a consistent set of 13 million in-stock molecules over 15 receptors, or binding sites, across the SARS-CoV-2 proteome. Our work shows surrogate docking models have six orders of magnitude more throughput than standard docking protocols on the same supercomputer node types. We demonstrate the power of high-speed surrogate models by running each target against 1 billion molecules in under a day (50k predictions per GPU seconds). We showcase a workflow for docking utilizing surrogate ML models as a pre-filter. Our workflow is ten times faster at screening a library of compounds than the standard technique, with an error rate less than 0.01% of detecting the underlying best scoring 0.1% of compounds. Our analysis of the speedup explains that to screen more molecules under a docking paradigm, another order of magnitude speedup must come from model accuracy rather than computing speed (which, if increased, will not anymore alter our throughput to screen molecules). We believe this is strong evidence for the community to begin focusing on improving the accuracy of surrogate models to improve the ability to screen massive compound libraries 100x or even 1000x faster than current techniques.
In $2020$, Korea Disease Control and Prevention Agency reported three rounds of surveys on seroprevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in South Korea. We analyze the seroprevalence surveys using a Bayesian method with an informative prior distribution on the seroprevalence parameter, and the sensitivity and specificity of the diagnostic test. We construct the informative prior using the posterior distribution obtained from the clinical evaluation data based on the plaque reduction neutralization test. The constraint of the seroprevalence parameter induced from the known confirmed coronavirus 2019 cases can be imposed naturally in the proposed Bayesian model. We also prove that the confidence interval of the seroprevalence parameter based on the Raos test can be the empty set, while the Bayesian method renders a reasonable interval estimator. As of the $30$th of October $2020$, the $95%$ credible interval of the estimated SARS-CoV-2 positive population does not exceed $307,448$, approximately $0.6%$ of the Korean population.