No Arabic abstract
Rapid progress in nonlinear plasmonic metasurfaces enabled many novel optical characteristics for metasurfaces, with potential applications in frequency metrology, timing characterization and quantum information. However, the spectrum of nonlinear optical response was typically based upon the linear optical resonance. In this work, a wavelength-multiplexed nonlinear plasmon-MoS2 hybrid metasurface with suppression phenomenon was proposed, where multiple nonlinear signals could to be simultaneously processed and optionally tuned. A clear physical picture to depict the nonlinear plasmonic bound states in the continuum (BICs) was presented, from the perspective of both classical and quantum approaches. Particularly, beyond the ordinary plasmon-polariton effect, we numerically demonstrated a giant BIC-inspired second-order nonlinear susceptibility $10^{-5}$~$m/V$ of MoS2 in the infrared band. The novelty in our study lies in the presence of a quantum oscillator that can be adopted to both suppress and enhance the nonlinear quasi BICs. This selectable nonlinear BIC-based suppression and enhancement effect can optionally block undesired modes, resulting in narrower linewidth as well as smaller quantum decay rates, which is also promising in slow-light-associated technologies.
Nonlinear nanostructured surfaces provide a paradigm shift in nonlinear optics with new ways to control and manipulate frequency conversion processes at the nanoscale, also offering novel opportunities for applications in photonics, chemistry, material science, and biosensing. Here, we develop a general approach to employ sharp resonances in metasurfaces originated from the physics of bound states in the continuum for both engineering and enhancing the nonlinear response. We study experimentally the third-harmonic generation from metasurfaces composed of symmetry-broken silicon meta-atoms and reveal that the harmonic generation intensity depends critically on the asymmetry parameter. We employ the concept of the critical coupling of light to the metasurface resonances to uncover the effect of radiative and nonradiative losses on the nonlinear conversion efficiency.
We introduce the concept and a generic approach to realize Extreme Huygens Metasurfaces by bridging the concepts of Huygens conditions and optical bound states in the continuum. This novel paradigm allows creating Huygens metasurfaces whose quality factors can be tuned over orders of magnitudes, generating extremely dispersive phase modulation. We validate this concept with a proof-of-concept experiment at the near-infrared wavelengths, demonstrating all-dielectric Huygens metasurfaces with different quality factors. Our study points out a practical route for controlling the radiative decay rate while maintaining the Huygens condition, complementing existing Huygens metasurfaces whose bandwidths are relatively broad and complicated to tune. This novel feature can provide new insight for various applications, including optical sensing, dispersion engineering and pulse-shaping, tunable metasurfaces, metadevices with high spectral selectivity, and nonlinear meta-optics.
Being motivated by the recent prediction of high-$Q$ supercavity modes in subwavelength dielectric resonators, we study the second-harmonic generation from isolated subwavelength AlGaAs nanoantennas pumped by a structured light. We reveal that nonlinear effects at the nanoscale can be enhanced dramatically provided the resonator parameters are tuned to the regime of the bound state in the continuum. We predict a record-high conversion efficiency for nanoscale resonators that exceeds by two orders of magnitude the conversion efficiency observed at the conditions of magnetic dipole Mie resonance, thus opening the way for highly-efficient nonlinear metadevices.
We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polarisation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
Resonant metasurfaces are an attractive platform for enhancing the non-linear optical processes, such as second harmonic generation (SHG), since they can generate very large local electromagnetic fields while relaxing the phase-matching requirements. Here, we take this platform a step closer to the practical applications by demonstrating visible range, continuous wave (CW) SHG. We do so by combining the attractive material properties of gallium phosphide with engineered, high quality-factor photonic modes enabled by bound states in the continuum. For the optimum case, we obtain efficiencies around 5e-5 % W$^{-1}$ when the system is pumped at 1200 nm wavelength with CW intensities of 1 kW/cm$^2$. Moreover, we measure external efficiencies as high as 0.1 % W$^{-1}$ with pump intensities of only 10 MW/cm$^2$ for pulsed irradiation. This efficiency is higher than the values previously reported for dielectric metasurfaces, but achieved here with pump intensities that are two orders of magnitude lower.