Do you want to publish a course? Click here

Extreme Huygens metasurfaces based on quasi-bound states in the continuum

150   0   0.0 ( 0 )
 Added by Mingkai Liu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the concept and a generic approach to realize Extreme Huygens Metasurfaces by bridging the concepts of Huygens conditions and optical bound states in the continuum. This novel paradigm allows creating Huygens metasurfaces whose quality factors can be tuned over orders of magnitudes, generating extremely dispersive phase modulation. We validate this concept with a proof-of-concept experiment at the near-infrared wavelengths, demonstrating all-dielectric Huygens metasurfaces with different quality factors. Our study points out a practical route for controlling the radiative decay rate while maintaining the Huygens condition, complementing existing Huygens metasurfaces whose bandwidths are relatively broad and complicated to tune. This novel feature can provide new insight for various applications, including optical sensing, dispersion engineering and pulse-shaping, tunable metasurfaces, metadevices with high spectral selectivity, and nonlinear meta-optics.



rate research

Read More

Metasurface-mediated bound states in the continuum (BIC) provides a versatile platform for light manipulation at subwavelength dimension with diverging radiative quality factor and extreme optical localization. In this work, we employ magnetic dipole quasi-BIC resonance in asymmetric silicon nanobar metasurfaces to realize giant Goos-Hanchen (GH) shift enhancement by more than three orders of wavelength. In sharp contrast to GH shift based on the Brewster dip or transmission-type resonance, the maximum GH shift here is located at the reflection peak with unity reflectance, which can be conveniently detected in the experiment. By adjusting the asymmetric parameter of metasurfaces, the $Q$-factor and GH shift can be modulated accordingly. More interestingly, it is found that GH shift exhibits an inverse quadratic dependence on the asymmetric parameter. Furthermore, we design an ultrasensitive environmental refractive index sensor based on the quasi-BIC enhanced GH shift, with a maximum sensitivity of 1.5$times$10$^{7}$ $mu$m/RIU. Our work not only reveals the essential role of BIC in engineering the basic optical phenomena, but also suggests the way for pushing the performance limits of optical communication devices, information storage, wavelength division de/multiplexers, and ultrasensitive sensors.
We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical properties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.
Resonant metasurfaces are an attractive platform for enhancing the non-linear optical processes, such as second harmonic generation (SHG), since they can generate very large local electromagnetic fields while relaxing the phase-matching requirements. Here, we take this platform a step closer to the practical applications by demonstrating visible range, continuous wave (CW) SHG. We do so by combining the attractive material properties of gallium phosphide with engineered, high quality-factor photonic modes enabled by bound states in the continuum. For the optimum case, we obtain efficiencies around 5e-5 % W$^{-1}$ when the system is pumped at 1200 nm wavelength with CW intensities of 1 kW/cm$^2$. Moreover, we measure external efficiencies as high as 0.1 % W$^{-1}$ with pump intensities of only 10 MW/cm$^2$ for pulsed irradiation. This efficiency is higher than the values previously reported for dielectric metasurfaces, but achieved here with pump intensities that are two orders of magnitude lower.
84 - Qun Ren , Feng Feng , Xiang Yao 2020
Rapid progress in nonlinear plasmonic metasurfaces enabled many novel optical characteristics for metasurfaces, with potential applications in frequency metrology, timing characterization and quantum information. However, the spectrum of nonlinear optical response was typically based upon the linear optical resonance. In this work, a wavelength-multiplexed nonlinear plasmon-MoS2 hybrid metasurface with suppression phenomenon was proposed, where multiple nonlinear signals could to be simultaneously processed and optionally tuned. A clear physical picture to depict the nonlinear plasmonic bound states in the continuum (BICs) was presented, from the perspective of both classical and quantum approaches. Particularly, beyond the ordinary plasmon-polariton effect, we numerically demonstrated a giant BIC-inspired second-order nonlinear susceptibility $10^{-5}$~$m/V$ of MoS2 in the infrared band. The novelty in our study lies in the presence of a quantum oscillator that can be adopted to both suppress and enhance the nonlinear quasi BICs. This selectable nonlinear BIC-based suppression and enhancement effect can optionally block undesired modes, resulting in narrower linewidth as well as smaller quantum decay rates, which is also promising in slow-light-associated technologies.
We demonstrate that rotationally symmetric chiral metasurfaces can support arbitrarily sharp resonances with the maximum optical chirality determined by precise shaping of bound states in the continuum (BICs). Being uncoupled from one circular polarisation of light and resonantly coupled to its counterpart, a metasurface hosting the chiral BIC resonance exhibits a narrow peak in the circular dichroism spectrum. We propose a realization of such chiral BIC metasurfaces based on pairs of dielectric bars and validate the concept of maximum chirality by numerical simulations
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا