No Arabic abstract
In this study, we report on the fractional Talbot effect of nonparaxial self-accelerating beams in a multilevel electromagnetically induced transparency (EIT) atomic configuration, which, to the best of our knowledge, is the first study on this subject. The Talbot effect originates from superposed eigenmodes of the Helmholtz equation and forms in the EIT window in the presence of both linear and cubic susceptibilities. The Talbot effect can be realized by appropriately selecting the coefficients of the beam components. Our results indicate that the larger the radial ifference between beam components, the stronger the interference between them, the smaller the Talbot angle is. The results of this study can be useful when studying optical imaging, optical measurements, and optical computing.
We demonstrate the fractional Talbot effect of nonpraxial accelerating beams, theoretically and numerically. It is based on the interference of nonparaxial accelerating solutions of the Helmholtz equation in two dimensions. The effect originates from the interfering lobes of a superposition of the solutions that accelerate along concentric semicircular trajectories with different radii. Talbot images form along certain central angles, which are referred to as the Talbot angles. The fractional nonparaxial Talbot effect is obtained by choosing the coefficients of beam components properly. A single nonparaxial accelerating beam possesses duality --- it can be viewed as a Talbot effect of itself with an infinite or zero Talbot angle. These results improve the understanding of nonparaxial accelerating beams and the Talbot effect among them.
By modulating transmission function of a weak probe field via a strong control standing wave, an electromagnetically induced grating can be created in the probe channel. Such a nonmaterial grating may lead to self-imaging of ultra-cold atoms or molecules in the Fresnel near-field regime. This work may offer a nondestructive and lensless way to image ultra-cold atoms or molecules.
In this letter, we propose a general real-space method for the generation of nonparaxial accelerating beams with arbitrary predefined convex trajectories. Our results lead to closed-form expressions for the required phase at the input plane. We present such closed-form results for a variety of caustic curves: besides circular, elliptic, and parabolic, we find for the first time general power-law and exponential trajectories. Furthermore, by changing the initial amplitude we can design different intensity profiles along the caustic.
We study nonparaxial autofocusing beams with pre-engineered trajectories. We consider the case of linearly polarized electric optical beams and examine their focusing properties such as contrast, beam width, and numerical aperture. Such beams are associated with larger intensity contrasts, can focus at smaller distances, and have smaller spot sizes as compared to the paraxial regime.
Electromagnetically induced transparency, as a quantum interference effect to eliminate optical absorption in an opaque medium, has found extensive applications in slow light generation, optical storage, frequency conversion, optical quantum memory as well as enhanced nonlinear interactions at the few-photon level in all kinds of systems. Recently, there have been great interests in exceptional points, a spectral singularity that could be reached by tuning various parameters in open systems, to render unusual features to the physical systems, such as optical states with chirality. Here we theoretically and experimentally study transparency and absorption modulated by chiral optical states at exceptional points in an indirectly-coupled resonator system. By tuning one resonator to an exceptional point, transparency or absorption occurs depending on the chirality of the eigenstate. Our results demonstrate a new strategy to manipulate the light flow and the spectra of a photonic resonator system by exploiting a discrete optical state associated with specific chirality at an exceptional point as a unique control bit, which opens up a new horizon of controlling slow light using optical states. Compatible with the idea of state control in quantum gate operation, this strategy hence bridges optical computing and storage.