No Arabic abstract
We consider the framework of high dimensional stochastic control problem, in which the controls are aggregated in the cost function. As first contribution we introduce a modified problem, whose optimal control is under some reasonable assumptions an $varepsilon$-optimal solution of the original problem. As second contribution, we present a decentralized algorithm whose convergence to the solution of the modified problem is established. Finally, we study the application to a problem of coordination of energy consumption and production of domestic appliances.
We study a class of infinite-dimensional singular stochastic control problems with applications in economic theory and finance. The control process linearly affects an abstract evolution equation on a suitable partially-ordered infinite-dimensional space X, it takes values in the positive cone of X, and it has right-continuous and nondecreasing paths. We first provide a rigorous formulation of the problem by properly defining the controlled dynamics and integrals with respect to the control process. We then exploit the concave structure of our problem and derive necessary and sufficient first-order conditions for optimality. The latter are finally exploited in a specification of the model where we find an explicit expression of the optimal control. The techniques used are those of semigroup theory, vector-valued integration, convex analysis, and general theory of stochastic processes.
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state processes are present in the cost functional. Based on a Hilbert space method, necessary and sufficient conditions are derived for the solvability of the problem, and a general approach for constructing optimal controls is developed. The crucial step in this construction is to establish the solvability of a Riccati-type equation, which is accomplished under a fairly weak condition by investigating the connection with forward stochastic LQ optimal control problems.
This paper deals with a family of stochastic control problems in Hilbert spaces which arises in typical applications (such as boundary control and control of delay equations with delay in the control) and for which is difficult to apply the dynamic programming approach due to the unboudedness of the control operator and to the lack of regularity of the underlying transition semigroup. We introduce a specific concept of partial derivative, designed for this situation, and we develop a method to prove that the associated HJB equation has a solution with enough regularity to find optimal controls in feedback form.
In this paper we study a class of combined regular and singular stochastic control problems that can be expressed as constrained BSDEs. In the Markovian case, this reduces to a characterization through a PDE with gradient constraint. But the BSDE formulation makes it possible to move beyond Markovian models and consider path-dependent problems. We also provide an approximation of the original control problem with standard BSDEs that yield a characterization of approximately optimal values and controls.
This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, with dynamics associated to a non singular underlying forward process. Due to the non$-$Markovian environment, our main argumentation relies on the use of comparison arguments for path dependent PDEs. Our representation allows in particular to quantify the regularity of the solution to the singular stochastic control problem in terms of the space and time initial data. Our framework also extends to the consideration of degenerate diffusions, leading to the representation of the solution as the infimum of solutions to $Z-$constrained BSDEs. As an application, we study the utility maximisation problem with transaction costs for non$-$Markovian dynamics.