In this paper we study a class of combined regular and singular stochastic control problems that can be expressed as constrained BSDEs. In the Markovian case, this reduces to a characterization through a PDE with gradient constraint. But the BSDE formulation makes it possible to move beyond Markovian models and consider path-dependent problems. We also provide an approximation of the original control problem with standard BSDEs that yield a characterization of approximately optimal values and controls.
We study a class of infinite-dimensional singular stochastic control problems with applications in economic theory and finance. The control process linearly affects an abstract evolution equation on a suitable partially-ordered infinite-dimensional space X, it takes values in the positive cone of X, and it has right-continuous and nondecreasing paths. We first provide a rigorous formulation of the problem by properly defining the controlled dynamics and integrals with respect to the control process. We then exploit the concave structure of our problem and derive necessary and sufficient first-order conditions for optimality. The latter are finally exploited in a specification of the model where we find an explicit expression of the optimal control. The techniques used are those of semigroup theory, vector-valued integration, convex analysis, and general theory of stochastic processes.
This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, with dynamics associated to a non singular underlying forward process. Due to the non$-$Markovian environment, our main argumentation relies on the use of comparison arguments for path dependent PDEs. Our representation allows in particular to quantify the regularity of the solution to the singular stochastic control problem in terms of the space and time initial data. Our framework also extends to the consideration of degenerate diffusions, leading to the representation of the solution as the infimum of solutions to $Z-$constrained BSDEs. As an application, we study the utility maximisation problem with transaction costs for non$-$Markovian dynamics.
In this paper we study the limit of the value function for a two-scale, infinite-dimensional, stochastic controlled system with cylindrical noise and possibly degenerate diffusion. The limit is represented as the value function of a new reduced control problem (on a reduced state space). The presence of a cylindrical noise prevents representation of the limit by viscosity solutions of HJB equations, while degeneracy of diffusion coefficients prevents representation as a classical BSDE. We use a vanishing noise regularization technique.
In this paper we study a Markovian two-dimensional bounded-variation stochastic control problem whose state process consists of a diffusive mean-reverting component and of a purely controlled one. The main problems characteristic lies in the interaction of the two components of the state process: the mean-reversion level of the diffusive component is an affine function of the current value of the purely controlled one. By relying on a combination of techniques from viscosity theory and free-boundary analysis, we provide the structure of the value function and we show that it satisfies a second-order smooth-fit principle. Such a regularity is then exploited in order to determine a system of functional equations solved by the two monotone continuous curves (free boundaries) that split the control problems state space in three connected regions. Further properties of the free boundaries are also obtained.
We consider the framework of high dimensional stochastic control problem, in which the controls are aggregated in the cost function. As first contribution we introduce a modified problem, whose optimal control is under some reasonable assumptions an $varepsilon$-optimal solution of the original problem. As second contribution, we present a decentralized algorithm whose convergence to the solution of the modified problem is established. Finally, we study the application to a problem of coordination of energy consumption and production of domestic appliances.