Iron diantimonide is a material with the highest known thermoelectric power. By combining scanning transmission electron microscope study with electronic transport neutron, X-ray scattering and first principle calculation we identify atomic defects that control colossal thermopower magnitude and nanoprecipitate clusters with Sb vacancy ordering which induce additional phonon scattering and substantially reduce thermal conductivity. Defects are found to cause rather weak but important monoclinic distortion of the unit cell Pnnm to Pm. The absence of Sb along [010] for high defect concentration forms conducting path due to Fe d orbital overlap. The connection between atomic defect anisotropy and colossal thermopower in FeSb2 paves the way for the understanding and tailoring of giant thermopower in related materials.
We identify the driving mechanism of the gigantic Seebeck coefficient in FeSb$_2$ as the phonon-drag effect associated with an in-gap density of states that we demonstrate to derive from excess iron. We accurately model electronic and thermoelectric transport coefficients and explain the so far ill-understood correlation of maxima and inflection points in different response functions. Our scenario has far-reaching consequences for attempts to harvest the spectacular powerfactor of FeSb$_2$.
Photochromism in single nitrogen-vacancy optical centers in diamond is demonstrated. Time-resolved optical spectroscopy shows that intense irradiation at 514 nm switches the nitrogen-vacancy defects to the negative form. This defect state relaxes back to the neutral form under dark conditions. Temporal anticorrelation of photons emitted by the different charge states of the optical center unambiguously indicates that the nitrogen-vacancy defect accounts for both 575 nm and 638 nm emission bands. Possible mechanism of photochromism involving nitrogen donors is discussed.
The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c-axis. Its microscopic structure has been analyzed in detail comparing results from a semi-empirical Newman superposition model analysis based on finestructure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B-site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of 1.0721.
Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal-organic framework (MOF). Incorporation of correlated vacancy defects within the framework affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF.
It is commonly believed that in typical collinear antiferromagnets, with no net magnetization, the energy bands are spin-(Kramers-degenerate. The opposite case is usually associated with a global time-reversal symmetry breaking (e.g., via ferro(i)magnetism), or with the spin-orbit interaction is combined with the broken spatial inversion symmetry. Recently, another type of spin splitting was demonstrated to emerge in some fully compensated by symmetry, nonrelativistic, collinear magnets, and not even necessarily non-centrosymmetric. These materials feature non-zero spin density staggered not only in real, but also in momentum space. This duality results in a combination of characteristics typical of ferro- and antiferromagnets. Here we discuss this novel concept in application to a well-known semiconductor, FeSb2, and predict that upon certain alloying it becomes magnetic, and features such magnetic duality. The calculated energy bands split antisymmetrically with respect to spin degenerate nodal surfaces (and not nodal points, as in the case of spin-orbit splitting. This combination of a large (0.2 eV) spin splitting, compensated net magnetization and metallic ground-state, and a particular magnetic easy axis generate a large anomalous Hall conductivity (~150 S/cm) and a sizable magneto-optical Kerr effect, all deemed to be hallmarks of nonzero net magnetization. We identify a large contribution to the anomalous response originating from the spin-orbit interaction gapped anti-Kramers nodal surfaces, a mechanism distinct from the nodal lines and Weyl {it points} in ferromagnets.