Do you want to publish a course? Click here

Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework

122   0   0.0 ( 0 )
 Added by Matthew Cliffe
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermally-densified hafnium terephthalate UiO-66(Hf) is shown to exhibit the strongest isotropic negative thermal expansion (NTE) effect yet reported for a metal-organic framework (MOF). Incorporation of correlated vacancy defects within the framework affects both the extent of thermal densification and the magnitude of NTE observed in the densified product. We thus demonstrate that defect inclusion can be used to tune systematically the physical behaviour of a MOF.



rate research

Read More

The mechanism and products of the structural collapse of the metal-organic frameworks (MOFs) UiO-66, MIL-140B and MIL-140C upon ball-milling are investigated through solid state 13C NMR and pair distribution function (PDF) studies, finding amorphization to proceed by the breaking of a fraction of metal-ligand bonding in each case. The amorphous products contain inorganic-organic bonding motifs reminiscent of the crystalline phases. Whilst the inorganic Zr6O4(OH)4 clusters of UiO-66 remain intact upon structural collapse, the ZrO backbone of the MIL-140 frameworks undergoes substantial distortion. Density functional theory calculations have been performed to investigate defective models of MIL-140B and show, through comparison of calculated and experimental 13C NMR spectra, that amorphization and defects in the materials are linked.
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region there is a giant peak of the negative thermal expansion. The height of this peak is comparable or even exceeds the thermal expansion of solid N$_2$, CO, O$_2$ or CH$_4$ in their triple points. It is shown that like in the case of light methane, the effect of pressure is quite unusual: as evidenced from the pressure dependence of the thermodynamic Gr{u}neisen parameter (which is negative and large in the absolute value), solid CD$_4$ becomes increasingly quantum with rising pressure.
Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy modes which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.
We combine infrared spectroscopy, nano-indentation measurements, and emph{ab initio} simulations to study the evolution of structural, elastic, thermal, and electronic responses of the metal organic framework MOF-74-Zn when loaded with H$_2$, CO$_2$, CH$_4$, and H$_2$O. We find that the molecular adsorption in this MOF triggers remarkable responses in all of these properties of the host material, with specific signatures for each of the guest molecules. With this comprehensive study we are able to clarify and correlate the underlying mechanisms regulating these responses with changes of the physical and chemical environment. Our findings suggest that metal organic framework materials in general, and MOF-74-Zn in particular, can be very promising materials for novel transducers and sensor applications, including highly selective small-molecule detection in gas mixtures.
185 - S. Haas , B. Batlogg , C. Besnard 2007
The uniaxial negative thermal expansion in pentacene crystals along $a$ is a particularity in the series of the oligoacenes, and exeptionally large for a crystalline solid. Full x-ray structure analysis from 120 K to 413 K reveals that the dominant thermal motion is a libration of the rigid molecules about their long axes, modifying the intermolecular angle which describes the herringbone packing within the layers. This herringbone angle increases with temperature (by 0.3 -- 0.6$^{circ}$ per 100 K), and causes an anisotropic rearrangement of the molecules within the layers, i.e. an expansion in the $b$ direction, and a distinct contraction along $a$. Additionally, a larger herringbone angle improves the cofacial overlap between adjacent, parallel molecules, and thus enhances the attractive van der Waals forces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا